Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T01:57:05.192Z Has data issue: false hasContentIssue false

Triple and Quadruple Junctions Thermophotovoltaic Devices Lattice Matched to InP

Published online by Cambridge University Press:  01 February 2011

Lekhnath Bhusal
Affiliation:
[email protected], University of Houston, Physics and Center for Advanced Materials, 724 SR-1, 4800 Calhoun, Houston, TX, 77204, United States, 7137477724
A Freundlich
Affiliation:
[email protected], University of Houston, Center for Advanced Materials and Physics Department, 724 SR1, 4800 Calhoun, Houston, TX, 77204, United States
Get access

Abstract

Power conversion in thermophotovoltaic (TPV) or any other photovoltaic device can be increased by implementing monolithically series connected multi-bandgap structure in the device. The main concern for multi-bandgap material is the availability of different band gaps for the optimal operation of the device. Based on the recent work, GaAsN/InAsN superlattice lattice matched to InP has shown the potential of achieving band gaps in the range of 0.65-0.35eV at 300K, which is technologically important range for the TPV structure due to the availability of the photon energies in this range from the heat source. In this work, we will present the calculation details and results to find the maximum power generated by the multi-bandgap monolithically series connected devices. Optimized band gaps for p-i-n junction subcells were estimated by finding the optimal current to provide the maximum power through the series-connected double, triple and quadruple junction cells for 1350K blackbody radiation as an incident flux.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Weyers, M., Sato, M. and Ando, H., Jpn. J. Appl. Phys. 31, L853, 1992.Google Scholar
2 Baillargeon, J. N., Cheng, K. Y., Hofler, G. E., Pearah, P. J., and Hsieh, K. C., Appl. Phys. Lett. 60 2540, 1992.Google Scholar
3 Kondow, M., Uomi, K., Niwa, A., Kitatani, T., Watahiki, S. and Yazawa, Y., Jpn. J. Appl. Phys. 35, 1273, 1996.Google Scholar
4 Kurtz, S. R., Allerman, A. A., Jones, E. D., Gee, J. M., Banas, J. J., and Hammons, B. E., Appl. Phys. Lett. 74, 729, 1999.Google Scholar
5 Wagner, A., Ellmers, C., Hohnsdorf, F., Koch, J., Agert, C., Leu, S., Hofmann, M., Stolz, W., and Ruhle, W. W., Appl. Phys. Lett. 76, 271, 2000.Google Scholar
6 Pavelescu, E-M., Peng, C. S., Jouhti, T., Konttinen, J., Li, W., Pessa, M., Dumitrescu, M. and Spanulescu, S., Appl. Phys. Lett. 80, 3054, 2002.Google Scholar
7 Li, W., Jouhti, T., Peng, C. S., Konttinen, J., Laukkanen, P., Pavelescu, E-M, Dumitrescu, M., and Pessa, M., Appl. Phys. Lett. 79, 3386, 2001.Google Scholar
8 Kohler, K, Wagner, J, Ganser, P, Serries, D, , Geppert, Maier, M and Kirste, , J of Phys.: Condens. Matter 16, S2995, 2004.Google Scholar
9 Buyanova, I.A., Chen, W.M., and Monemar, B., MRS Internet J. Nitride Semicond. Res. 6(2), 1, 2001.Google Scholar
10 Bhusal, L., Alemu, A. and Freundlich, A., Phys. Rev. B 72, 073309, 2005.Google Scholar
11 Bhusal, L., Alemu, A. and Freundlich, A., Nanotechnology 15, S245, 2004.Google Scholar
12 Freundlich, A., Final report, "State of Texas Advanced Research Grant", 03652-0099 1999, September. (2002).Google Scholar
13 Shan, W., Walukiewicz, W., Ager, J. W. III, Haller, E. E., Geisz, J. F., Friedman, D. J., Olson, J. M., and Kurtz, S. R., Phys. Rev. Lett. 82, 1221 (1999).Google Scholar
14 Bhusal, L., Alemu, A. and Freundlich, A., 31st IEEE PVSC Proc., 133, 2005 Google Scholar
15 Olson, J.M., Friedman, D.J. and Kurtz, S., Ch 9 in “Handbook of photovoltaic science and engineering”, Eds. Luque, A, Hegedus, S, John Wiley and sons, Ltd, 2003.Google Scholar
16 Nelson, J., in “The physics of Solar cells”, Ch 4. Imperial College Press, 2003.Google Scholar
17 Fraas, L M, Avery, J E, Huang, H X and Martinelli, R U, Semicond. Sci. Technol. 18, S165, 2003.Google Scholar
18 Emery, Keith, Semicond. Sci. Technol. 18, S228, 2003.Google Scholar
19 Mahorter, R.G., Wernsman, B., Thomas, R.M. and Siergiej, R.R., Semicond. Sci. Technol. 18, S232, 2003.Google Scholar
20 Wanlass, M.W. and Albin, D.S., Sixth conference on thermophotovoltaic generation of electricity, AIP Conference Proceedings, 738, 462, 2004.Google Scholar
21 Wilt, D.M., Wehrer, R.J., Maurer, W.F., Jenkins, P.P, Wernsman, B. and Schultz, R.W., Sixth conference on thermophotovoltaic generation of electricity, AIP Conference Proceedings, 738, 453, 2004.Google Scholar
22 Wernsman, B., Siergiej, R.R, Link, S.D., Mahorter, R.G., Palmisiano, M.N., Wehrer, R.J., Schultz, R.W., Schmuck, G.P., Messham, R.L., Murray, S., Murray, C.S., Newman, F., Taylor, D., D.M. DePoy, Rahmlow, T., IEEE Transaction on Electron devices, 51, 512, 2004.Google Scholar