Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T02:27:08.438Z Has data issue: false hasContentIssue false

Trimethylamine Alane for Low-Pressure Movpe Growth of AlGaAs-Based Materials and Device Structures

Published online by Cambridge University Press:  26 February 2011

R. P. Schneider
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185–5800
R. P. Bryan
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185–5800
E. D. Jones
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185–5800
R. M. Biefeld
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185–5800
G. R. Olbright
Affiliation:
Photonics Research Inc., 100 Technology Drive, Broomfield, CO 80021
Get access

Abstract

The use of trimethylamine alane (TMAAl) as an alternative to trimethylaluminum (TMAl) for low-pressure metalorganic vapor-phase epitaxy (MOVPE) of AlGaAs thin films as well as complex optoelectronic device structures has been studied in detail. AlGaAs layers were grown in a horizontal reaction chamber at 20–110 mbar with growth temperatures in the range 650°C≤TG≤750°C. Wafer thickness uniformity is strongly dependent on growth pressure, and is acceptable only for the highest linear flow velocities. The 12K photoluminescence (PL) spectra of AlGaAs layers grown using TMAAl and TEGa exhibit uniformly intense and narrow bound-exciton emission throughout the growth temperature range investigated. To assess the viability of this new source for the low-pressure OMVPE growth of advanced optoelectronic devices, several optically-pumped vertical-cavity surface-emitting laser (VCSEL) structures were grown using TMAAl extensively. Room temperature lasing at 850 nm was reproducibly obtained from the VCSEL structures, with a threshold pumping power comparable to similar structures grown by molecular beam epitaxy in our laboratories.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jones, A. C. and Rushworth, S. A., J. Cryst. Growth 106, 253 (1990).Google Scholar
2. Hobson, W. S., Harris, T. D., Abernathy, C. R. and Pearton, S. J., Appl. Phys. Lett. 58, 77 (1991).CrossRefGoogle Scholar
3. Abernathy, C. R., Jordan, A. S., Pearton, S. J., Hobson, W. S., Boling, D. A. and Muhr, G. T., Appl. Phys. Lett. 56, 2654 (1990).Google Scholar
4. Hobson, W. S., van der Ziel, J. P., Levi, A. F. J., O'Gorman, J., Abernathy, C. R., Geva, M., Luther, L. C. and Swaminathan, V., J. Appl. Phys. 70, 432 (1991).Google Scholar
5. Hobson, W. S., Ren, F., Lamont Schnoes, M., Sputz, S. K., Harris, T. D., Pearton, S. J., Abernathy, C. R. and Jones, K. S., Appl. Phys. Lett. 59, 1975 (1991).Google Scholar
6. Jewell, J. L., Harbison, J. P., Scherer, A., Lee, Y. H., and Florez, L. T., J. Quantum. Electron. QE-27, 1332 (1991).Google Scholar
7. Schaus, C. F., Schaus, H. E., Sun, S., Raja, M. Y. A., and Brueck, S. R. J., Electron. Lett. 25 538 (1989).Google Scholar
8. Zhou, P., Cheng, J., Schaus, C. F., Sun, S. Z., Kopchik, D., Hains, C., Hsin, W., Chen, C. -H., Myers, D. R., Vawter, G. A., Olbright, G. R., and Bryan, R. P., 49th Annual Device Research Conference, Boulder, CO (1991).Google Scholar
9. Kuech, T. and Veuhoff, E., J. Cryst. Growth 68, 148 (1984).Google Scholar
10. Olbright, G. R., Bryan, R. P., Fu, W. S., Apte, R. B., Bloom, D. and Lee, Y. H., Photon. Tech. Lett. 3, 779 (1991).Google Scholar