Hostname: page-component-7bb8b95d7b-fmk2r Total loading time: 0 Render date: 2024-09-12T17:15:12.675Z Has data issue: false hasContentIssue false

Trends of Research in Active Addressing of LCDS

Published online by Cambridge University Press:  15 February 2011

Ernst Lueder*
Affiliation:
Universitaet Stuttgart, Institut fuer Netzwerk- und Systemtheorie, Pfaffenwaldring 47, D-70550 Stuttgart, Germany
Get access

Abstract

Active addressing is focused on TFTs and MIMs as pixel-switches. The manufacture of a-Si-TFTs tends to settle down at a three-mask process as long as risky steps can be avoided. Fabrication throughput is being enhanced by increasing the deposition rate for a-Si- and poly-Si-layers processed by PECV.D. For wider process windows and for building row drivers with a-Si-TFTs effective mobility will have to be increased beyond 1 cm2/Vs especially by new TFT-electrodes, a protective sandwich around the a-Si-layer and modified process techniques. Poly-Si-TFTs should be fabricated at temperatures below 450 °C and preferably without laser annealing before they become an economic solution. MIMs still require more materials research to find a dielectric with a larger trap density enhancing speed of operation, lower addressing voltages and electrodes for improved long-term stability. Low-temperature processes are required for LCDs with plastic substrates.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Baraff, D.R., Long, J.R., Mac Laurin, B.K., Miner, C.J., Streater, R.W. (1981), “The Optimization of Metal-Insulator-Metal Nonlinear Devices for Use in Multiplied Liquid Crystal Displays”, IEEE Transactions on Electron Devices.Google Scholar
2. Okta, E. et al, Extended Abstract of International Conference on Solid State Devices Material 419, (1990).Google Scholar
3. Togashi, S., “Two terminal device addressed LCD”, Optoelectronics - Devices and Technologies, vol. 7, no. 2, pp. 271286 (1992).Google Scholar
4. Kuijk, K.E. (1990), D2R, “A versatile diode matrix liquid crystal approach”, Proceedings Eurodisplay 90, pp. 174177.Google Scholar
5. Knapp, A.G., Hartman, R.A., “Thin film diode technology for high quality AMLCD“, Proc. IDRC 94, Monterey Ca., pp. 1419.Google Scholar
6. Schaepperle, J. (1994), “Solution of the system of non-linear differential equations for MIM addressed LC cells”, (oral communications).Google Scholar
7. Glueck, J., Lauer, H.-U., Lueder, E., Kallfass, T., Straub, D., “Improvement in light efficiency of a-Si:l hi-addressed reflective λ/4-HAN-mode light valve for Color TV”, SID 93 Digest, pp. 299302.Google Scholar
8. Lueder, E., “Simplified manufacture of a-Si-TFTs with four or three masks”, 2nd Liquid Display Seminar by Nikkei BP, Chiba, Japan, 1994.Google Scholar
9. Glueck, J., Lueder, E., Kallfass, T., Lauer, H.-U., Straub, D., Huttelmaier, S., “A 14” diagonal a-Si-TFT AMLCD for PAL-Television”, SID 94 Digest, pp. 263266.Google Scholar
10. Richou, F., Morin, F., Le Contellec, M., Prolonge, A., “The “2S” TFT Process for low cost AMLCD manufacturing”, SID 92 Digest, pp. 619622.Google Scholar
11. Chouan, Y., Rolland, A., Grino, J., Boutroy, J., Boisseau, G., Szydlo, N., “3S TFT: An extension of 2S TFT for projection application”, Proceedings Eurodisplay 93, pp. 207210.Google Scholar
12. Hayama, H., “Gated rf-discharge plasma-CVD technology for a-Si:H fabrication”, Miami 1994, p. 732.Google Scholar
13. Ohshima, H., “Status and prospects of poly-Si TFT technology”, IDRC 94 Monterey Conference Record, pp. 2629.Google Scholar
14. Sun, Y., Chen, S., Mei, P., Boyce, J.B., “Excimer Laser Annealing Process for Poly-Si TFT AMLCD Applications, IDRC 1994, Monterey, p. 134.Google Scholar
15. Sano, K., Nohda, T., Aya, Y., Kuwahara, T., Iwata, H., Kuriyama, H., Takeuchi, M., Wakisaka, K., Kiyama, S., Tsuda, S., Yoneda, K., “Excimer laser activation in ion doped poly-Si films and its application to high-mobility poly-Si TFTs”, AM-LCD '94, pp. 104107.Google Scholar
16. Mohri, M., Kakinuma, H., Tsuruoka, T., “Fabrication of TFTs using plasma CVD poly-Si at very low temperature”, IEDM 92, pp. 673676.Google Scholar
17. Mimura, A. et al, “Low Temperature Poly-Si TFT Process Technology for Large Glass Substrate”, IDRC 1994, Monterey, pp. 126129.Google Scholar
18. Tanaka, T., Asuma, H., Ogawa, K., Shinagawa, Y., Ono, K., Konishi, N., “An LCD addressed by a-Si:H TFTs with peripheral poly-Si TFT circuits”, IEDM 93, pp. 389392.Google Scholar
19. Hochholzer, V., Lueder, E., Kallfass, T., “A two mask fabrication of Ta205-MIMs with adjustable threshold and gain”, SID 90 Digest, pp. 526529.Google Scholar
20. Hochholzer, V., Lueder, E., Kallfass, T., Lauer, H.-U., “A Full-Color 14” MIM-LCD with improved photolithography”, SID 94 Digest, p. 423.Google Scholar
21. Kondo, M., Chida, Y.,, Matsuda, A., “Plasma CVD Technology of Amorphous Silicon for High Performance TFTs“, Digest of Techn. Papers, AMLCD 94, Shinjuku, Japan.Google Scholar
22. Matsumoto, F. et al, “Color STN-LCD on Polymer Film Substrates”, SID 1993 Digest, pp. 965968.Google Scholar
23. Dobler, M., “Polykristalline Halbleiter und Niedertemperatur-Dielektrika zur Herstellung von Dünnschichttransistoren für flache Flüssigkristall-Bildschirme”, PhD Thesis, 1995, Stuttgart.Google Scholar