Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-28T23:33:49.324Z Has data issue: false hasContentIssue false

Trends in Atomic Resolution Electron Microscopy

Published online by Cambridge University Press:  21 February 2011

David J. Smith
Affiliation:
also at: Department of Physics and Astronomy, Arizona State University, Tempe, AZ 85287
M.R. Mccartney
Affiliation:
Center for Solid State Science, Arizona State University, Tempe, AZ 85287
Get access

Abstract

Structural information on the atomic scale is readily accessible from thin samples using the technique of high-resolution electron microscopy. Electron micrographs recorded under well-defined operating conditions can be directly interpreted in terms of atomic arrangements around defects of interest such as dislocations and interfaces. Digital image recording with slow-scan CCD cameras and quantitative comparisons with image simulations based on structural models are starting to lead to improved accuracy and reliability in structure determinations. Techniques based upon holographic methods are utilizing the superior illumination coherence of the field emission electron source to enhance resolution beyond the conventional extended Scherzer limit. Innovative methods for combining image and diffraction pattern information are also leading to improved levels of resolution for periodic objects. Care is needed to ensure that electron irradiation damage and surface cleanliness do not impose unnecessary restrictions on the details that can be extracted from recorded micrographs. It is proposed that the complex wavefunction emerging from the exit-surface of the sample should be considered as a basis for comparing the differences between experimental micrographs and image simulations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Ruska, E., Adv. Opt. El. Microsc. I (1965) 115.Google Scholar
[2] High Resolution Microscopy of Materials, Eds. Krakow, W., Ponce, F.A. and Smith, D.J., Materials Research Society Symposium Proceedings, Vol. 139 (Materials Research Society, Pittsburgh, 1989).Google Scholar
[3] High Resolution Electron Microscopy of Defects in Materials, Eds. Sinclair, R., Smith, D.J. and Dahmen, U., Materials Research Society Symposium Proceedings, Vol. 183 (Materials Research Society, Pittsburgh, 1990).Google Scholar
[4] Atomic-Scale Imaging of Surfaces and Interfaces, Eds. Biegelsen, D.K., Smith, D.J. and Tong, S.Y., Materials Research Society Symposium Proceedings, Vol. 295 (Materials Research Society, Pittsburgh, Pittsburgh, 1993).Google Scholar
[5] Menter, J.W., Proc. Roy. Soc. A236 (1956) 119.Google Scholar
[6] Allpress, J.G. and Sanders, J.V., J. Appl. Cryst. 6 (1969) 165.CrossRefGoogle Scholar
[7] lijima, S., J. Appl. Phys. 42 (1971) 5891.Google Scholar
[8] Hutchison, J.L. and Anderson, J.S., Phys. status solidi (a) 9 (1972) 207.CrossRefGoogle Scholar
[9] Anderson, J.S., Chemica Scripta 14 (1978/1979) 129, 287.Google Scholar
[10] Self, P.R. and O'Keefe, M.A., in High-Resolution Transmission Electron Microscopy, Eds. Buseck, P.R., Cowley, J.M. and Eyring, L. (Oxford University Press, New York, 1988) Chap.8.Google Scholar
[11] Goodman, P.A. and Moodie, A. F., Acta Cryst. A30 (1974) 280.Google Scholar
[12] Cowley, J.M., see Ref. 10, Chaps. 1-4.Google Scholar
[13] Smith, D.J., Adv. Opt. El. Microsc. 11 (1989) 1.Google Scholar
[14] Humphreys, C.J. and Spence, J.C.H., Optik 58 (1981) 125.Google Scholar
[15] Saxton, W.O., Howie, A., Mistry, A. and Pitt, A., Inst. Phys. Conf. Ser. 36 (1977) 119.Google Scholar
[16] Hoche, T., Kenway, P.R., Kleebe, H.-J. and Ruhle, M., MRS Symp. Proc. 295 (1993) 103.Google Scholar
[17] Horiuchi, S., Matsui, T., Kitami, Y., Yokoyama, M., Suehara, S., Wu, X.J., Matsui, I., and Katsuta, T., Ultramicroscopy 39 (1991) 231.Google Scholar
[18] Lichte, H., Ultramicroscopy 38 (1991)13.Google Scholar
[19] Dyck, D. Van, Beeck, M. Op de and Coene, W., Optik 93 (1993) 103.Google Scholar
[20] Coene, W., Janssen, G., Beeck, M. Op de and Dyck, D. Van, Phys. Rev.Lett. 69 (1992) 3743.Google Scholar
[21] O'Keefe, M.A., Dahmen, U. and Hetherington, C.J.D., MRS Symp. Proc. 159 (1990) 453.CrossRefGoogle Scholar
[22] Cowley, J.M. and Moodie, A.F., Proc. Phys. Soc. (London) B70 (1957) 486.CrossRefGoogle Scholar
[23] lijima, S. and O'Keefe, M.A., J. Microscopy 117 (1979) 347.Google Scholar
[24] Thust, A. and Urban, K., Ultramicroscopy 45 (1992) 23.Google Scholar
[25] Smith, D.J., Bursill, L.A. and Wood, G.J., J. Solid State Chem. 50 (1983) 51.Google Scholar
[26] Merkle, K.L. and Smith, D.J., Ultramicroscopy 22 (1987) 57.CrossRefGoogle Scholar
[27] Ramikumar, V. and Dravid, V., MRS Symp. Proc. 295 (1993) 115.Google Scholar
[28] Kim, M.J., Carpenter, R.W., Chen, Y.L. and Schwuttke, G.H., Ultramicroscopy 40 (1992)258.Google Scholar
[29] Bourret, A., Desseaux, J. and Renault, A., Phil. Mag. A45 (1982) 1.CrossRefGoogle Scholar
[30] D'Anterroches, C. and Bourret, A., Phil. Mag. A49 (1984) 783.CrossRefGoogle Scholar
[31] Bourret, A., Rouviere, J.L. and Penisson, J.M., Acta Cryst. A44 (1988) 838.CrossRefGoogle Scholar
[32] McKernan, S. and Carter, C.B., MRS Symp. Proc. 295 (1993) 173.CrossRefGoogle Scholar
[33] Cherns, D., Spence, J.C.H., Anstis, G.R. and Hutchison, J.L., Phil. Mag. A46 (1982) 849.Google Scholar
[34] Catana, A., Schmid, P.E., Lu, P. and Smith, D.J., Phil. Mag. A66 (1992) 933.CrossRefGoogle Scholar
[35] Lu, P. and Smith, D.J., Surf. Sci. 254 (1991) 119.CrossRefGoogle Scholar
[36] Barry, J.C., Phil. Mag. A64 (1991) 111.CrossRefGoogle Scholar
[37] King, W.E. and Campbell, G.H., MRS Symp. Proc. 295 (1993) 83.Google Scholar
[38] Campbell, G.H., Wien, W.L., King, W.E., Foiles, S.M. and Ruhle, M., Ultramicroscopy 51 (1993)247.Google Scholar
[39] Penisson, J.M., Nowicki, T. and Biscondi, M., Phil. Mag. A58 (1988) 947.Google Scholar
[40] Medlin, D.L., Mills, M.J., Stobbs, W.M., M.S. Daw and Cosandey, F., MRS Symp. Proc. 295 (1993)91.Google Scholar
[41] Dahmen, U., Hetherington, C.J.D., O'Keefe, M.A., Westmacott, K.H., Mills, M.J. Daw, M.S. and Vitek, V., Phil. Mag. Letts. 62 (1990) 327.Google Scholar
[42] Mills, M.J., Daw, M.S., Thomas, G.J. and Cosandey, F., Ultramicroscopy 40 (1992) 247.Google Scholar
[43] McCartney, M.R., Youngman, R.A. and Teller, R.G., Ultramicroscopy 40 (1992) 291.Google Scholar
[44] Buckett, M.I., Shaffer, J.P. and Merkle, K.L., MRS Symp. Proc. 295 (1993) 109.Google Scholar
[45] Marks, L.D., Surf. Sci. 139 (1983) 281.Google Scholar
[46] Saxton, W.O. and Smith, D.J., Ultramicroscopy 18 (1985) 39.CrossRefGoogle Scholar
[47] King, W.E. and Lamver, B.S., in Microbeam Analysis - 1991, Ed. Howitt, D.G. (San Francisco Press, San Francisco, 1991) p. 217.Google Scholar
[48] Banfield, J.F., Veblen, D.R. and Smith, D.J., Amer. Mineral. 76 (1991) 343.Google Scholar
[49] Dong, W., Baird, T., Fryer, J.R., Gilmore, C.J., MacNicol, D.D., Bricogne, G., Smith, D.J., O'Keefe, M.A. and Hovmoller, S., Nature 355 (1992) 605.Google Scholar
[50] Hu, J.J. and Li, F.H., Ultramicroscopy 35 (1991) 339.Google Scholar
[51] Hovmoller, S., Sjogren, A., Farrants, G., Sundberg, M. and Marinder, B.-O., Nature 311 (1984)238.Google Scholar
[52] Hu, J.J., Li, F.H. and Fan, H.F., Ultramicroscopy 41 (1992) 387.Google Scholar
[53] Downing, K.H., Meisheng, H., Wenk, H.-R. and O'Keefe, M.A., Nature 348 (1992) 525.Google Scholar
[54] Saxton, W.O., Computer Techniques for Image Processing in Electron Microscopy (Academic, New York, 1978).Google Scholar
[55] Krivanek, O.L., Optik, 45 (1976) 97.Google Scholar
[56] Glanville, A.R., Moodie, A.F., Whitfield, H.J. and Wilson, H.J., Aust. J. Phys. 39 (1985) 71.CrossRefGoogle Scholar
[57] Coene, W.M.J. and Denteneer, T.J., Ultramicroscopy 38 (1991) 225.Google Scholar
[58] Lichte, H., Ultramicroscopy 51 (1993) 15.Google Scholar
[59] Saxton, W.O., Smith, D.J. and Erasmus, S.J., J. Microscopy 130 (1983) 187.Google Scholar
[60] Koster, A.J. and Ruijter, W.J. de, Ultramicroscopy 40 (1992) 89.Google Scholar
[61] Krivanek, O.L. and Mooney, P.E., Ultramicroscopy 49 (1993) 95.Google Scholar
[62] Daberkow, I., Herrmann, K.-H., Liu, L.B. and Rau, W.D., Ultramicroscopy 38 (1991) 215.CrossRefGoogle Scholar
[63] Ruijter, W.J. de and Weiss, J.K., Rev. Sci. Insts. 63 (1992) 4314.Google Scholar
[64] Ruijter, W.J. de and Weiss, J.K., Ultramicroscopy 50 (1993) 269.Google Scholar
[65] Gajdardziska-Josifovska, M., Ruijter, W.J. de, McCartney, M.R., Smith, D.J.. Weiss, J.K. and Zuo, J.M., Ultramicroscopy 50 (1993) 285.CrossRefGoogle Scholar
[66] Ourmazd, A., Baumann, F.H., Bode, M. and Kim, Y., Ultramicroscopy 34 (1990) 237.Google Scholar
[67] Penisson, J.M., Baumann, F.H., Bode, M. and Ourmazd, A., Phil. Mag. Letts. 64 (1991) 239.Google Scholar
[68] Ourmazd, A., Taylor, D.W., Bode, M. and Kim, Y., Science 246 (1989) 1571.Google Scholar
[69] Paciornik, S., Kilaas, R. and Gronsky, R., Ultramicroscopy 50 (1993) 255.Google Scholar
[70] Gibson, J.M. and McDonald, M.L., MRS Symp. Proc. 82 (1987) 109.Google Scholar
[71] Stobbs, W.M. and Saxton, W.O., J. Microscopy 151 (1988) 88.Google Scholar
[72] McCartney, M.R. and Gajdardziska-Josifovska, M., Ultramicroscopy, in press.Google Scholar
[73] Dyck, D. Van, in: Proc Xllth. Int Cong. E. M. (Seattle, 1990) Vol.1, 26.Google Scholar
[74] Hobbs, L.W., in: Quantitative Electron Microscopy, Eds. Chapman, J.N. and Craven, A.J. (SUSSP Publications, Edinburgh, 1984) Chapter 11.Google Scholar
[75] Smith, A.R. and Eyring, L., Ultramicroscopy 8 (1982) 65.Google Scholar
[76] Hofmann, D. and Ernst, F., Ultramicroscopy, in press.Google Scholar
[77] Smith, D.J., Ruijter, W.J. de, McCartney, M.R. and Weiss, J.K., Ultramicroscopy 52(1993)591.Google Scholar