Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-04T21:58:35.726Z Has data issue: false hasContentIssue false

Transport of molecules through carbon nanotube channels in aqueous environment: A molecular dynamics study

Published online by Cambridge University Press:  26 February 2011

Yongqiang Xue
Affiliation:
[email protected], University at Albany-SUNY, College of Nanoscale Science and Engineering, 251 Fuller Road, Albany, NY, 12203, United States, 518-956-7220
Maodu Chen
Affiliation:
[email protected], Dalian University of Technology, Department of Physics, China, People's Republic of
Get access

Abstract

We present molecular dynamics simulation of molecules transporting through carbon nanotubes for applications in engineered flow channels, focusing on the dynamics of molecules spontaneously inserted into the nanotube channel in aqueous environment. The molecules studied include a C60 molecule, a finite segment of carbon nanotube with smaller diameter, and single/double- stranded DNA molecules. We show that in the absence of water solvation, the van der Waals interaction between the molecule and the nanotube wall can induce a rapid spontaneous encapsulation of the molecule inside the nanotube channel. The encapsulation process is strongly impeded for nanotube dissolved in water due to the competition between the van der Waals, hydrophobic and hydrogen bonding interactions in the nanotube/water/molecule complex. Water adsorption inside the nanotube channel plays an important role in determining the dynamics of the spontaneous insertion process.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See, e.g., Issue on Advances in Carbon Nanotubes, MRS Bulletin 29, No. 4, 2004.Google Scholar
2. See, e.g., Chen, R.J. et al. , Proc. Natl. Acd. Sci. 100, 4984(2003).Google Scholar
3. For a recent review, see Katz, E. and Willner, I., ChemPhysChem 5, 1084 (2004).Google Scholar
4. See, e.g., Hummer, G., Rasalah, J.C., and Noworyta, J.P., Nature 414, 188 (2001);Google Scholar
Joseph, S., Mashl, R.J., Jakobsson, E., and Aluru, N.R., Nano Lett. 3, 1399 (2003).Google Scholar
Yeh, I.-C. and Hummer, G., Proc. Natl. Acad. Sci. 101, 12177 (2004).Google Scholar
5. Eijkel, J.C.T. and van den Berg, A., Microfluid Nanofluid 1, 249(2005).Google Scholar
6. Gelb, L.D., Gubbins, K.E., Radhakrishnan, R., and Sliwinska-Bartkowiak, M., Rep. Prog. Phys. 62, 1573 (1999).Google Scholar
7. Case, D.A. et al. (2004), AMBER 8, University of California, San Francisco. Google Scholar
8. Wang, J., Cieplak, P., and Kollman, P.A., J. Comput. Chem. 21, 1049 (2000);Google Scholar
Cornell, W.D. et al. , J. Am. Chem. Soc. 117, 5179 (1995).Google Scholar
9. Jorgensen, W.L. et al. , J. Chem. Phys. 79, 926 (1995).Google Scholar
10. Darden, T., York, D., and Pedersen, L., J. Chem. Phys. 98, 10089 (1993).Google Scholar
11. Berendsen, H.J.C. et al. , J. Chem. Phys. 81, 3684 (1984).Google Scholar
12. Zhang, Q. and Jiang, Q., Phys. Rev. Lett. 88, 45503 (2002);Google Scholar
Legoas, S.B. et al. , ibid. 90, 55504 (2003);Google Scholar
Zhao, Y. et al. , ibid. 91, 175504 (2003);Google Scholar
Tangnery, P., Louie, S.G., and Cohen, M.L., ibid. 93, 65503 (2004);Google Scholar
Liu, P., Zhang, Y.W., and Lu, C., J. Appl. Phys. 97, 94313 (2005).Google Scholar
13. McCammon, J.A. and Harvey, S.C., Dynamics of Proteins and Nucleic Acids (Cambridge University Press, Cambridge, 1987).Google Scholar
14. Gao, H., Kong, Y., Cui, D., and Ozkan, C.S., Nano Lett. 3, 471(2003);Google Scholar
Gao, H. and Kong, Y., Annu. Rev. Phys. Chem. 34, 123 (2004).Google Scholar
15. Walther, J.H., Jaffe, R., Halicioglu, T., and Koumostsakos, P., J. Phys. Chem. B 105, 9980 (2001);Google Scholar
Marti, J. and Gordillo, M.C., Phys. Rev. E 64, 21504 (2001);Google Scholar
Striolo, A., Chialvo, A.A., Gubbins, K.E., and Cummings, P.T., J. Chem. Phys. 122, 234712 (2005).Google Scholar
16. Zimmerli, U., Gonnet, P.G., Walther, J.H., and Koumoutsakos, P., Nano Lett. 5, 1017 (2005).Google Scholar