Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T02:34:37.467Z Has data issue: false hasContentIssue false

Transport Modeling and Compensation Mechanism for Semi-Insulating LT-Gaas and InP: Cu

Published online by Cambridge University Press:  15 February 2011

K. Xie
Affiliation:
Department of Electrical and Computer Engineering, State University of New York at Buffalo Buffalo, New York 14260
C. R. Wie
Affiliation:
Department of Electrical and Computer Engineering, State University of New York at Buffalo Buffalo, New York 14260
Get access

Abstract

The compensation mechanism and transport properties of annealed GaAs grown by molecular beam epitaxy at low substrate temperature (LT-GaAs) and Cu diffused InP are analyzed by using a deep donor band model and a precipitate model. It was found that the compensation in highly resistive LT GaAs can not be explained by the precipitate model alone, and therefore a high donor density had to be considered. In Cu diffused InP, the precipitate model gives a consistent explanation for the observed carrier compensation and mobility data. For both semi-insulating LT-GaAs and fully-compensated, lightly-doped InP:Cu, the neutral impurity scattering was found to be a major carrier scattering mechanism.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Smith, F.W., Calawa, A.R., Chu, C.I., Manfra, M.J. and Mahoney, L.J., IEEE Electron Device Letters, EDL–9 77(1988).Google Scholar
2.Chen, Y., Williamson, S., Brook, T., Smith, F.W., and Calawa, A.R., Appl. Phys. Lett, 59, 1984(1991).Google Scholar
3.Kaminska, M., Liliental-weber, I., Weber, E.R., George, T., Kortright, J.B., Smith, F.W., Tsaur, B-Y., and Calawa, A.R., Appl. Phys. Lett. 54, 1881(1989).Google Scholar
4.Wie, C.R., Xie, K., Look, D.C., Evans, K.R., and Stutz, C.E., in “Semiinsulating IlI-V Materials”, Toronto, (1990)71, Matr, Res. Soc. Symp. Proc. 198, 383 (1990).Google Scholar
5.Melloch, M.R., Otsuka, N., Woodall, J.M., Freeouf, J.L., and Warren, A.C., Appl. Phys. Lett. 57, 8 (1990).Google Scholar
6.Look, D. C., Walters, D.C., Manasreh, M.O., Sizelove, J.R., Stytz, C.E., and Evans, K.R., Phys. Rev. B. 42, 3578(1990).Google Scholar
7.Warren, A.C., Woodall, J.M., Freeouf, J.L., Grischkowsky, D., McLntarff, D.T., Melloch, M.R., and Ofsaka, N., Appl. Phys. Lett. 57, 1331(1990).Google Scholar
8.Manasreh, M.O., Look, D.C., Evans, K.R., and Stutz, C.E., Phys. Rev.B 41, 10272 (1990)Google Scholar
9.Leon, R. P., Kaminska, M., Liliental – Weber, Z., Yu, K.M., and Weber, E.R., Third Intl. Conference on Indiun Phosphide and related Materials, Cardiff, wales, UJK(1991).Google Scholar
10.Conwell, E.M., and Vassell, M.O., Phys. Rev. 166, 797(1968).Google Scholar
11.Weisberg, L.R., J. Appl. Phys. 33, 1817 (1962)Google Scholar
12.Look, D.C.J.Appl. Phys. 70, 3148(1991).Google Scholar
13.Allison, H.W., and Fuller, C.S., J. Appl. Phys. 36, 2519 (1965)Google Scholar