Published online by Cambridge University Press: 15 February 2011
The compensation mechanism and transport properties of annealed GaAs grown by molecular beam epitaxy at low substrate temperature (LT-GaAs) and Cu diffused InP are analyzed by using a deep donor band model and a precipitate model. It was found that the compensation in highly resistive LT GaAs can not be explained by the precipitate model alone, and therefore a high donor density had to be considered. In Cu diffused InP, the precipitate model gives a consistent explanation for the observed carrier compensation and mobility data. For both semi-insulating LT-GaAs and fully-compensated, lightly-doped InP:Cu, the neutral impurity scattering was found to be a major carrier scattering mechanism.