Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-28T23:30:17.731Z Has data issue: false hasContentIssue false

Transport, Growth Mechanisms, and Material Quality in GaN Epitaxial Lateral Overgrowth

Published online by Cambridge University Press:  15 February 2011

Michael E. Coltrin
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
Christine C. Willan
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
Michael E. Bartram
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
Jung Han
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
Nancy Missert
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
Mary H. Crawford
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
Albert G. Baca
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
Get access

Abstract

Growth kinetics, mechanisms, and material quality in GaN epitaxial lateral over-growth (ELO) were examined using a single mask of systematically varied patterns. A 2-D gas phase reaction/diffusion model describes how transport of the Ga precursor to the growth surface enhances the lateral rate in the early stages of growth. In agreement with SEM studies of truncated growth runs, the model also predicts the dramatic decrease in the lateral rate that occurs as GaN over-growth reduces the exposed area of the mask. At the point of convergence, a step-flow coalescence mechanism is observed to fill in the area between lateral growth-fronts. This alternative growth mode in which a secondary growth of GaN is nucleated along a single convergence line, may be responsible for producing smooth films observed to have uniform cathodoluminescence (CL) when using 1 μm nucleation zones. Although emission is comprised of both UV (∼365nm) and yellow (∼550nm) components, the spectra suggest these films have reduced concentrations of threading dislocations normally associated with non-radiative recombination centers and defects known to accompany growth-front convergence lines.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nakamura, S., Mukai, T., Senoh, M., Appl. Phys. Lett. 64, 16871689 (1994).Google Scholar
2. Keller, S., Keller, B.P., Wu, Y.F., Heying, B., Kapolnek, D., Speck, J.S., Mishra, U. K., and DenBaars, S.P., Appl. Phys. Lett. 68, 15254 (1996).Google Scholar
3. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., Sugimoto, Y., Kozaki, T., Jumemoto, H., Sano, M., and Chocho, K., Appl. Phys. Lett, 72, 211 (1998)Google Scholar
4. Weimann, N. G., Eastman, L.F., Dharanipal, D., Ng, H.M., and Moustakas, T.D., J. Appl. Phys. 83, 3656 (1998).Google Scholar
5. Kapolnek, D., Keller, S., Vetury, R., Underwood, R.D., Kazodoy, P., Denbaars, S.P., and Mishra, U.K., Appl. Phys. Lett. 71, 12041206 (1997).Google Scholar
6. Zheleva, T.S., Nam, O.-H., Bremser, M.D., and Davis, R.F., Appl. Phys. Lett. 71, 2472 (1997).Google Scholar
7. Nam, O.-H., Bremser, M.D., Zheleva, T.S., and Davis, R.F., Appl. Phys. Lett. 71, 2638 (1997).Google Scholar
8. Nam, O.-H., Zheleva, T.S., Bremser, M.D., and Davis, R.F., J. Elec. Mat. 27, 233237 (1998)Google Scholar
9. Marchand, H., Ibbetson, J.P., Fini, P.T., Keller, S., DenBaars, S.P., Speck, J.S., and Mishra, U.K., Submitted to J. Crystal Growth, (1998).Google Scholar
10. Kimura, A., Sasaoka, C., Sakai, A., Usui, A., Mat. Res. Symp. Proc. 482, 119124 (1998)Google Scholar
11. Beaumont, B., Vaille, M., Nataf, G., Bouille, A., Guillaume, J.-C., Vennegues, P., Haffouz, S., and Gibart, Pierre, MRS Internet J. of Nitride Semiconductor Res. 3, Art. 20 (1998).Google Scholar
12. Coltrin, M. E. and Kee, R. J., Mater. Res. Soc. Symp. Proc., 145, 119 (1989).Google Scholar
13. Coltrin, M. E., Kee, R. J., and Rupley, F. M., Int. J. Chem. Kinet., 23, 1111 (1991).Google Scholar
14. Kitamura, S., Hiramatsu, K., and Sawaki, N., Jpn. J. Appl. Phys., 34, L1184 (1995).Google Scholar
15. Seager, C. H., Missert, N. A., Tallant, D. R., and Warren, W. L., J. Appl. Phys. 83, 1153 (1998).Google Scholar
16. Rosner, S. J., Carr, E. C., Ludowise, M. J., Girolami, G. and Erikson, H. I., Appl. Phys. Lett. 70, 420 (1997).Google Scholar