Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T14:44:04.679Z Has data issue: false hasContentIssue false

Transport Behavior and Thermal Conductivity Reduction in the Composite System PbTe-Pb-Sb

Published online by Cambridge University Press:  01 February 2011

Joseph Sootsman
Affiliation:
[email protected], Northwestern University, Chemistry, 2145 Sheridan Rd., Evanston, IL, 60208, United States
Huijun Kong
Affiliation:
[email protected], University of Michigan, Department of Physics, Ann Arbor, MI, 48109, United States
Ctirad Uher
Affiliation:
[email protected], University of Michigan, Department of Physics, Ann Arbor, MI, 48109, United States
Adam Downey
Affiliation:
[email protected], Michigan State University, Department of Electrical and Computer Engineering, East Lansing, MI, 48824, United States
Jonathan James D'Angelo
Affiliation:
[email protected], Michigan State University, Department of Electrical and Computer Engineering, East Lansing, MI, 48824, United States
Chun-I Wu
Affiliation:
[email protected], Michigan State University, Department of Electrical and Computer Engineering, East Lansing, MI, 48824, United States
Timothy Hogan
Affiliation:
[email protected], Michigan State University, Department of Electrical and Computer Engineering, East Lansing, MI, 48824, United States
Thierry Caillat
Affiliation:
[email protected], California Institute of Technology, Jet Propulsion Laboratory, Pasadena, CA, 91109, United States
Mercouri Kanatzidis
Affiliation:
[email protected], Northwestern University, Department of Chemistry, 2145 Sheridan Rd., Evanston, IL, 60208, United States
Get access

Abstract

We report the synthesis of nanostructured composite PbTe with excess Pb and Sb metal inclusions. Scanning and transmission electron microscopy reveal these inclusions in both the nano- and macroscales. The electrical conductivity and Seebeck coefficient dependence on temperature show unusual trends which depend on the inclusion Pb/Sb ratio. Several ratios showed marked enhancements in power factor at 700 K. The thermal conductivity of these composites is reported.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Rowe, D. M. CRC Handbook of Thermoelectrics (CRC Press, Boca Raton, FL 1, 1995).Google Scholar
2. Bottner, H.; Chen, G.; Venkatasubramanian, R. MRS Bull. 31, 211217 (2006).Google Scholar
3. Androulakis, J.; Hsu, K. F.; Pcionek, R.; Kong, H.; Uher, C.; Dangelo, J. J.; Downey, A. Hogan, T.; Kanatzidis, M. G. Adv. Mater. 18, 1170 (2006).Google Scholar
4. Hsu, K. F.; Loo, S.; Guo, F.; Chen, W.; Dyck, J. S.; Uher, C.; Hogan, T.; Polychroniadis, E. K.; Kanatzidis, M. G. Science 303, 818821 (2004).Google Scholar
5. Poudeu, P. F. P.; D'Angelo, J. J.; Kong, H.; Downey, A.; Short, J. L.; Pcionek, R.; Hogan, T. P.; Uher, C.; Kanatzidis, M. G. J. Am. Chem. Soc. 128, 1434714355 (2006).Google Scholar
6. Poudeu, P. F. P.; D'Angelo, J. J.; Downey, A.; Short, J. L.; Hogan, T. P.; Uher, C.; Kanatzidis, M. G. Angew. Chem. Int. Ed. 45, 38353839 (2006).Google Scholar
7. Wang, H.; Li, J. F.; Nan, C. W.; Zhou, M.; Liu, W. S.; Zhang, B. P.; Kita, T. Appl. Phys. Lett. 88 (2006).Google Scholar
8. Harman, T. C., Walsh, M. P., Laforge, B. E. Turner, G. W. J. Electron. Mater. 34, L19–L22 (2005).Google Scholar
9. Kim, W.; Zide, J.; Gossard, A.; Klenov, D.; Stemmer, S.; Shakouri, A.; Majumdar, A. Phys. Rev. Lett. 96 (2006).Google Scholar
10. Sootsman, J. R.; Pcionek, R. J.; Kong, H. J.; Uher, C.; Kanatzidis, M. G. Chem. Mater. 18, 49934995 (2006).Google Scholar
11. Heremans, J. P.; Thrush, C. M.; Morelli, D. T. J. Appl. Phys. 98 (2005).Google Scholar