Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T02:29:40.423Z Has data issue: false hasContentIssue false

Transparent, Conductive and Flexible Carbon Nanotube Films and Their Application in Organic Light Emitting Diodes

Published online by Cambridge University Press:  01 February 2011

Koungmin Ryu
Affiliation:
[email protected], University of Southern California, Electro-Physics, 920 West 37th St., SSC514, Los Angeles, 90089, United States, 213-740-4231
Daihua Zhang
Affiliation:
[email protected], University of Southern California, E.E.-Electrophysics, 920 West 37th St., SSC514, Los Angeles, 90089, United States
Xiaolei Liu
Affiliation:
[email protected], University of Southern California, E.E.-Electrophysics, 920 West 37th St., SSC514, Los Angeles, 90089, United States
Evgueni Polikarpov
Affiliation:
[email protected], University of Southern California, Chemistry, Los Angeles, 90089, United States
Mark Tompson
Affiliation:
[email protected], University of Southern California, Chemistry, Los Angeles, 90089, United States
Chongwu Zhou
Affiliation:
[email protected], University of Southern California, E.E.-Electrophysics, 920 West 37th St., SSC514, Los Angeles, 90089, United States
Get access

Abstract

We have successfully used a transfer printing technique to directly transfer vacuum-filtered nanotube film to glass and plastic substrates. Our typical SWNT-film has a transparency of ∼80% and a sheet resistance around 400 Ohm/square. Further improvement to the nanotube film includes SOCl2 doping and PEDOT passivation, which significantly improve the sheet conductance and surface quality of the nanotube films. We have applied the optimized SWNT films as hole injection electrodes to demonstrate OLEDs on both rigid glass and flexible substrates.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Xu, Z.; Wu, Y.; Hu, B.; Ivanov, I. N.; Geohegan, D. B.; Appl. Phys. Lett. 2005, 87, 263118 Google Scholar
2 Romero, D. B.; Carrard, M.; De Heer, W.; Zuppiroli, L.; Adv. Mater. 1996, 8, 899 Google Scholar
3 Zhang, M.; Fang, S.; Zakhidov, A. A.; Lee, S. B.; Aliev, A. E.; Williams, C. D.; Atkinson, K. R.; Baughman, R. H.; Science. 2005, 309, 1215 Google Scholar
4 de Heer, W. A.; Bacsa, W. S.; Châtelain, A.; Gerfin, T.; Humphrey-Baker, R.; Forro, L.; Ugarte, D.; Science. 1995, 268, 845 Google Scholar
5 Bekyarova, E.; Itkis, M. E.; Cabrera, N.; Zhao, B.; Yu, A.; Gao, J.; Haddon, R. C.; J. Am. Chem. Soc. 2005, 127, 5990 Google Scholar
6 Zhou, Y.; Hu, L.; Gruner, G.; Appl. Phys. Lett., in pressGoogle Scholar