Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T22:27:06.913Z Has data issue: false hasContentIssue false

Transparent Conducting Indium-Tin-Oxide Thin Film with Extremely Flatted Surface

Published online by Cambridge University Press:  21 March 2011

Hiromichi Ohta
Affiliation:
Hosono Transparent ElectroActive Materials, ERATO, JST, KSP C-1232, 3-3-1 Sakado, Takatsu, Kawasaki 213-0012, JAPAN
Masahiro Orita
Affiliation:
Hosono Transparent ElectroActive Materials, ERATO, JST, KSP C-1232, 3-3-1 Sakado, Takatsu, Kawasaki 213-0012, JAPAN
Masahiro Hirano
Affiliation:
Hosono Transparent ElectroActive Materials, ERATO, JST, KSP C-1232, 3-3-1 Sakado, Takatsu, Kawasaki 213-0012, JAPAN
Hideo Hosono
Affiliation:
Materials and Structures Laboratory,Tokyo Institute of Technology Nagatsuda,Midori-ku,Yokohama 226-8503, JAPAN
Get access

Abstract

Indium-tin-oxide films were grown hetero-epitaxially on YSZ surface at a substrate temperature of 900 °C, and their surface microstructures were observed by using atomic force microscopy. ITO films grown on (111) surface of YSZ exhibited very high crystal quality; full width at half maximum of out-of-plane rocking curve was 54 second. The ITO was grown spirally, with flat terraces and steps corresponding to (222) plane spacing of 0.29 nm. Oxygen pressure during film growth is another key factor to obtain atomically flat surfaced ITO thin film.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ohta, H., Kawamura, K., Orita, M., Sarukura, N., Hirano, M., Hosono, H., Electronics Letters, 36, 984 (2000).; Appl. Phys. Lett., 77, 475 (2000).Google Scholar
2. Tarsa, E. J., English, J. H., Speck, J. S., Appl. Phys. Lett., 62, 2332 (1993).Google Scholar
3. Kamei, M., Yanagi, T., Takaki, S., Shigesato, Y., Appl. Phys. Lett., 64, 2712 (1994).Google Scholar
4. Taga, N., Odaka, H., Shigesato, Y., Yasui, I., Kamei, M., Haynes, T. E., Jpn. J. Appl. Phys., 37, 6524 (1998).Google Scholar
5. Ohta, H., Orita, M., Hirano, M., Tanji, H., Kawazoe, H., Hosono, H., Appl. Phys. Lett., 76, 2740 (2000).; Mat. Res. Soc. Symp. Proc., to be published.Google Scholar
6. Choopun, S., Vispute, R. D., Noch, W., Balsamo, A., SHarma, R. P., Venkatesan, T., Iliadis, A., Look, D. C., Appl. Phys. Lett., 75, 3947 (1999).Google Scholar
7. Chen, Y., Ko, H. J., Hong, S. K., Yao, T., Appl. Phys. Lett., 76, 559 (2000).Google Scholar
8. , Kiessig, Annalen der Physik, 10, 771 (1931).Google Scholar
9. Wei, S., Li, B., Fujimoto, T., Kojima, I., Phys. Rev., B58, 3605 (1998).Google Scholar
10. Parratt, L. G., Phys. Rev., 95, 359 (1954).Google Scholar
11. Sinha, S. K., Sirota, E. B., Garoff, S., Phys. Rev., B38, 2297 (1988).Google Scholar