Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T15:29:37.058Z Has data issue: false hasContentIssue false

Transmission properties of multilayered Period Doubling and Silver-Mean graphene structures

Published online by Cambridge University Press:  31 January 2012

G. Rodríguez-Arellano
Affiliation:
Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calzada Solidaridad Esquina con Paseo La Bufa S/N, 98060 Zacatecas, Zac., Mexico
D. P. Juárez-López
Affiliation:
Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calzada Solidaridad Esquina con Paseo La Bufa S/N, 98060 Zacatecas, Zac., Mexico
J. Madrigal-Melchor
Affiliation:
Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calzada Solidaridad Esquina con Paseo La Bufa S/N, 98060 Zacatecas, Zac., Mexico
R. Pérez-Álvarez
Affiliation:
Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calzada Solidaridad Esquina con Paseo La Bufa S/N, 98060 Zacatecas, Zac., Mexico
J. C. Martínez-Orozco
Affiliation:
Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calzada Solidaridad Esquina con Paseo La Bufa S/N, 98060 Zacatecas, Zac., Mexico
I. Rodríguez-Vargas
Affiliation:
Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calzada Solidaridad Esquina con Paseo La Bufa S/N, 98060 Zacatecas, Zac., Mexico
Get access

Abstract

We present the propagation properties of Dirac-electrons in multilayered Period-Doubling (MPDGS) and Silver-Mean (MSMGS) graphene structures. The multilayered graphene structures are built arranging breaking and non-breaking symmetry substrates such as SiC and SiO2 following a given quasirregular substitution rule locating on them a graphene sheet. We have implemented the Transfer Matrix technique to calculate the transmittance of these multilayered graphene structures. This technique allows us to analyze readily the main differences of the transmission properties between MPDGS and MSMGS.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Maciá, E., Rep. Prog. Phys. 69, 397 (2006).Google Scholar
2. Pérez-Álvarez, R., García-Moliner, F. and Velasco, V. R., J. Phys.: Condens. Matter 13, 3689 (2001).Google Scholar
3. Zhu, S. -N., Zhu, Y. -Y., Ming, N. B., Science 278, 843 (1997).Google Scholar
4. Agarwal, V., Mora-Ramos, M. E., Alvarado-Tenorio, B., Photonics and Nanostructures – Fundamentals and Applications 7, 63 (2009).Google Scholar
5. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., and Firsov, A. A., Science 306, 666 (2004).Google Scholar
6. Castro-Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. and Geim, A. K., Rev. Mod. Phys. 81, 109 (2009).Google Scholar
7. Geim, A. K., and Novoselov, K. S., Nature Mater. 6, 183 (2007).Google Scholar
8. Katsnelson, M. I., Novoselov, K. S., and Geim, A. K., Nat. Phys. 2, 620 (2006).Google Scholar
9. Sena, S. H. R., Pereira, J. M. Jr, Farias, G. A., Vasconcelos, M. S. and Albuquerque, E. L., J. Phys.: Condens. Matter 22, 465305 (2010).Google Scholar
10. Sun, L., Fang, C., Song, Y. and Guo, Y., J. Phys.: Condens. Matter 22, 445303 (2010).Google Scholar
11. Zhou, S. Y., Gweon, G. -H., Fedorov, A. V., First, P. N., de Heer, W. A., Lee, D. -H., Guinea, F., Castro Neto, A. H., and Lanzara, A., Nat. Mater. 6, 770 (2007).Google Scholar
12. Yeh, P., Optical waves in layered media, John Wiley & Sons, Inc., New Jersey, 2005.Google Scholar
13. Viana Gomes, J. and Peres, N. M. R., J. Phys.: Condens. Matter 20, 325221 (2008).Google Scholar
14. Ramezani Masir, M., Vasilopoulos, P. and Peeters, F. M., J. Phys.: Condens. Matter 23, 315301 (2011).Google Scholar