Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T07:47:39.152Z Has data issue: false hasContentIssue false

Transmission for a finite superlattice with a linear modulation of the potential barriers height.

Published online by Cambridge University Press:  13 February 2012

K. A. Rodríguez-Magdaleno
Affiliation:
Unidad Académica de Física. Universidad Autónoma de Zacatecas.Calzada Solidaridad esquina con Paseo la Bufa S/N, C.P. 98060. Zacatecas, Zac. México.
J. C. Martínez-Orozco
Affiliation:
Unidad Académica de Física. Universidad Autónoma de Zacatecas.Calzada Solidaridad esquina con Paseo la Bufa S/N, C.P. 98060. Zacatecas, Zac. México.
D. A. Contreras-Solorio
Affiliation:
Unidad Académica de Física. Universidad Autónoma de Zacatecas.Calzada Solidaridad esquina con Paseo la Bufa S/N, C.P. 98060. Zacatecas, Zac. México.
Get access

Abstract

Using the transfer matrix method and the Ben Daniel-Duke equation for variable mass electrons propagation, we calculate the transmittance for a finite superlattice where the potential barriers height follows a linear dependence like that of an inverted “V” letter. The energy dependence of the transmittance presents intervals of stopbands and nearly flat passbands. We calculate these properties for several numbers of barriers as well as for different barrier and wells widths and compare those with a regular superlattice.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tung, H. H. and Lee, C. P., IEEE J. Quantum Electron. 32, 507512 (1996).Google Scholar
2. Gómez, I. et al. ., J. Appl. Phys. 85(7), 39163918 (1999).Google Scholar
3. Arriaga, J. and Saldaña, X..J. Appl. Phys. 100(4), 044911 (2006).Google Scholar
4. Saldaña Saldaña, X. I., Contreras Solorio, D. A. Enciso Muñoz, y A., Reflectancia de una estructura multicapas con intercalado de materiales izquierdos, 20 Encuentro Nal. De Inv. Cient. y Tec. del Golfo de México, Cd. Victoria, Tam., México (2008).Google Scholar
5. Madrigal Melchor, J., Enciso Muñoz, Agustín, Saldaña, X. I., Contreras-Solorio, D. A., Filtro óptico multicapas con variación gaussiana del índice refractivo, LII Congreso Nacional de Física, Acapulco, Guerrero, México (2009).Google Scholar
6. Madrigal-Melchor, J., Reyes-Villagrana, R. A., Saldaña, X., Jelev-Vlaev, S., and Contreras-Solorio, D. A., Acoustic layered filter with a Gaussian distribution of impedances, SLAFES, Book of Abstracts. Iguazú, Argentina (2008).Google Scholar
7. Ben Daniel, D. J. and Duke, C. B.. Phys. Rev. 152, 683692 (1966).Google Scholar
8. Pérez-Álvarez, R., García-Moliner, F., Transfer matrix, Green functions and related techniques (UniversitatJaume I, Spain, 2004).Google Scholar
9. Singh, J., Physics of semiconductors and their heterostructures (McGraw-Hill, 1993).Google Scholar