Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T06:53:01.994Z Has data issue: false hasContentIssue false

TRANSMISSION ELECTRON MICROSCOPY STUDY OF INTERFACE REGION OF ALN / 6H-SIC

Published online by Cambridge University Press:  01 February 2011

Jharna Chaudhuri
Affiliation:
[email protected], Texas Tech University, Mechanical Engineering, 7th Street & Boston Avenue, Lubbock, TX, 79409-1021, United States, (806) 742 3563 ext, (806) 742 3540
Luke Owuor Nyakiti
Affiliation:
[email protected], Texas Tech University, Department of Mechanical Engineering, 7th Street & Boston, Lubbock, TX, 79409-1021, United States
Peng Lu
Affiliation:
[email protected], Kansas State University, Department of Chemical Engineering, Manhattan, KS, 66506, United States
James H Edgar
Affiliation:
[email protected], Kansas State University, Department of Chemical Engineering, Manhattan, KS, 66506, United States
Peng Li
Affiliation:
[email protected], University of New Mexico, Department of Earth and Planetary Science, Albuquerque, NM, 87131, United States
Get access

Abstract

Transmission electron microscopy (TEM) study was performed to investigate the interface region of AlN/6H-SiC. Thick AlN layers were grown on a 3.5° off-axis 6H-SiC substrate at a temperature of 1790 °C for 100 hours by sublimation-recondensation method. The energy dispersive x-ray spectroscopy (EDXS) analysis indicated considerable amount of aluminum and nitrogen present in the substrate and Si and C present in AlN. Lattice images of cross-sectional TEM samples show a faceted interface with step growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Monemar, B., “III-V nitrides-important future electronic materials”, Journal of Materials Science, Materials in Electronics 10. 227 (1999).Google Scholar
2. Strite, S. and Morkoc, H., J. Vac. Sci. Technol B 10, 1237 (1992).10.1116/1.585897Google Scholar
3. Edgar, J. H., Liu, L., Liu, B., Jhuang, D., Chaudhuri, J., Kuball, M., and Rajasingam, S., J. Cryst. Growth 246, 187 (2002).10.1016/S0022-0248(02)01741-4Google Scholar
4. Taniyasu, Y., Kasu, M., and Makimoto, T., Appl. Phys. Lett. 89, 182112 (2006).10.1063/1.2378726Google Scholar
5. Slack, G.A. and McNelly, T.F., J. Cryst. Growth 34, 263 (1976).Google Scholar
6. Slack, G.A. and McNelly, T.F., J. Cryst. Growth 42, 560 (1977).Google Scholar
7. Bickermann, M., Epelbaum, B.M., and Winnacker, A., J. Cryst. Growth 269, 432 (2004).Google Scholar
8. Mokhov, E.N., Avdeev, O.V., Barash, I.S., Chemekova, T.Yu., Roenkov, A.D., Segal, A.S., Wolfson, A.A., Makarov, Yu.N., Ramm, M.G., and Heleva, H., J. Cryst. Growth 281, 93 (2005).Google Scholar
9. Zhuang, D., Herro, Z. G., Schlesser, R., Raghothamachar, B., Dudley, M., and Sitar, Z., J. Electron. Mater. 35 1513 (2006).10.1007/s11664-006-0141-xGoogle Scholar
10. Schowalter, L.J., Schujman, S.B., Liu, W., Goorsky, M., Wood, M.C., Grandusky, J., Shahedipour-Sandvik, F., Phys. Sat. Sol. A 203, 1667 (2006).Google Scholar
11. Tanaka, S., Kern, R. S., and Davis, R. F., Appl. Phys. Lett. 66, 37 (1995).10.1063/1.114173Google Scholar
12. Chaudhuri, J., Thokala, R., Edgar, J. H., and Swye, B. S., J. Appl. Phys. 77, 6263 (1995).10.1063/1.359158Google Scholar
13. Ponce, F. A., Walle, C. G. Van de, and Northrop, J. E., Phys. Rev. B 53, 7473 (1996).10.1103/PhysRevB.53.7473Google Scholar
14. Torres, V. M., Edwards, J. L., Wilkens, B. J., Smith, D. J., Doak, R. B., and Tsong, I. S. T., Appl. Phys. Lett. 74, 985 (1999).Google Scholar
15. Edgar, J.H, Gu, Z., and Smith, D. J., phys. Stat. Sol. 203, 3720 (2006).Google Scholar