Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-28T23:34:31.745Z Has data issue: false hasContentIssue false

Transmission electron microscopy study of domain structures in ferroelectric SrBi2Nb2O9 ceramics

Published online by Cambridge University Press:  01 February 2011

C. Karthik
Affiliation:
Materials Research Centre, Indian Institute of Science, Bangalore-560012, India.
N. Ravishankar
Affiliation:
Materials Research Centre, Indian Institute of Science, Bangalore-560012, India.
K.B.R. Varma
Affiliation:
Materials Research Centre, Indian Institute of Science, Bangalore-560012, India.
Get access

Abstract

A transmission electron microscopy study has been carried out on the domain structures of SrBi2Nb2O9 (SBN) ferroelectric ceramics which belong to the Aurivillius family of bismuth layered perovskite oxides. SBN is a potential candidate for Ferroelectric Random access memory (FeRAM) applications. The 90° ferroelectric domains and antiphase boundaries (APBs) were identified with dark field imaging techniques using different superlattice reflections which arise as a consequence of octahedral rotations and cationic shifts. The 90° domain walls are irregular in shape without any faceting. The antiphase boundaries are less dense compared to that of SrBi2Ta2O9(SBT). The electron microscopy observations are correlated with the polarization fatigue nature of the ceramic where the domain structures possibly play a key role in the fatigue- free behavior of the Aurivillius family of ferroelectric oxides.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Scott, J.F. and Araujo, C.A., Science, 1989. 246, p.1400.Google Scholar
2. Warren, W.L., Tuttle, B.A., and Dimos, D., Appl. Phys. Lett, 1995. 67, p.1426.Google Scholar
3. Chen, H.D., Udayakumar, K.R., Gaskey, C.J., and Cross, L.E., Appl. Phys. Lett, 1995. 67, p.3411.Google Scholar
4. Araujo, C.A.-P.d., Cuchiaro, J.D., McMillan, I.D., Scott, M.C., and Scott, J.F., Nature, 1995. 374, p.627.Google Scholar
5. Park, B.H., Kang, B.S., Bu, S.D., Noh, T.W., Lee, J., and Jo, W., Nature, 1999. 401, p.682.Google Scholar
6. Arit, G. and Pertsev, N.A., J. Appl. Phy, 1991. 70, p.2283.Google Scholar
7. Zhu, X., Zhu, J., Zhou, S., Li, Q., Liu, Z., and Ming, N., Appl. Phy. Lett, 2001. 78(6), p.799.Google Scholar
8. Su, D., Zhu, J.S., Wang, Y.N., Xu, Q.Y., and Liu, J.S., J. Appl. Phy, 2003. 93(8), p.4784.Google Scholar
9. Ding, Y., Liu, J.S., and Wang, Y.N., Appl. Phy. Lett, 2000. 76(1), p.103.Google Scholar
10. Ding, Y., Liu, J.S., Qin, H.X., Zhu, J.S., and Wang, Y.N., Appl. Phy. Lett, 2001. 78(26), p.4175.Google Scholar
11. Li, Y.L., Chen, L.Q., Asayama, G., Schlom, D.G., Zurbuchen, M.A., and Streiffer, S.K., J. Appl. Phy, 2004. 95(11), p.6332.Google Scholar
12. Zurbuchen, M.A., Asayama, G., Schlom, D.G., and Streiffer, S.K., Phy. Rev. Lett.,, 2002. 88(10), p.107601.Google Scholar
13. Newnham, R.E., Wolfe, R.W., and Dorrian, J.F., Mat. Res. Bull., 1971. 6(1040).Google Scholar
14. Newnham, R.E., Wolfe, R.W., Horsey, R.S., Diaz-colon, F.A., and Kay, M.L., Mat. Res. Bull., 1973. 8, p.1183.Google Scholar
15. Glazer, A.M., Acta Cryst., 1972. B28, p.3384.Google Scholar
16. Reaney, I.M., Colla, E.L., and Setter, N., Jpn. J. Appl. Phys, 1994. 33, p.3984.Google Scholar