Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T17:52:08.715Z Has data issue: false hasContentIssue false

Transmission Electron Microscopy Stjudy of Initerface Microstrucure in ZnO Thin Films Grown on Various Substrates (Glass,Au,Sl,α-Al2O3)

Published online by Cambridge University Press:  10 February 2011

Y. Yoshino
Affiliation:
Yokohama R&D Center, Murata Mfg. Co., Ltd., Kanagawa 226, Japan
S. Iwasa
Affiliation:
Kanazawa Plant, Murata Mfg. Co., Ltd. Ishikawa 920–21, Japan
H. Aoki
Affiliation:
R&D Division, Murata Mfg. Co., Ltd. Shiga 520–23, Japan
Y. Deguchi
Affiliation:
R&D Division, Murata Mfg. Co., Ltd. Shiga 520–23, Japan
Y. Yamamoto
Affiliation:
R&D Division, Murata Mfg. Co., Ltd. Shiga 520–23, Japan
K. Ohwada
Affiliation:
Yokohama R&D Center, Murata Mfg. Co., Ltd., Kanagawa 226, Japan
Get access

Abstract

Zinc oxide (ZnO) thin films have been grown by radio frequency sputtering on glass, Al, Au and R cut sapphire substrates. Microstructures of the ZnO / substrate interface have been observed by transmission electron microscope. The purpose of this study is to elucidate the crystal growth mechanism of ZnO thin films using various substrates that have different crystallinity and crystal structures. An amorphous layer with a thickness of about 5 nm is observed at the ZnO/glass interface, and c axis orientation perpendicular to the substrate is observed on this amorphous layer. Mianstructurts at the ZnO/buffer metal interface, on the other hand, are significantly different from those of ZnO/glass interface. A thick amorphous layer of about 15 nm is observed at the ZnO/Al interface, presumably consisting of Al2O3 interface layer material. ZnO thin film grown on Au buffer layers is distinctly different from both ZnO on glass and Al. No amorphous layer is formed at the ZnO/Au interface, and c axis orientation begins directly from the Au surface. Epitaxially grown ZnO thin film is confirmed on a R-cut sapphire substrate. These results dearly demonstrate that ZnO thin films prepared by radio frequency sputtering are strongly influenced by the substrate surface crystallinity at the topmost layer of the substrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yamamoto, T., Shiosaki, T. and Kawabata, A., J. Appl Phys. 51, 3113 (1980).Google Scholar
2. Yoshino, Y., Kadota, M., Ieki, H., Kasanami, T. and Wakino, K. in 8th Intemational Symposium of Plasma Chemistry (Proc. 2, Tokyo, Japan, 1987 22712276.Google Scholar
3. Minami, T., Nanto, H. and Takata, S., Jpn. J. Appl. Phys. 23, 280 (1984).Google Scholar
4. Larson, J. D., Winslow, D. K. and Zitelli, L.T., IEEE Trans, Sonics & Ultrson. SU 19, 18 (1972).Google Scholar
5. Hata, T., Minamikawa, T., Noda, E., Morimoto, O. and Hada, T., Jpn. J. Appl. Phys. Suppl. 18, 219 (1979).Google Scholar
6. Minakata, M., Chubachi, N. and Kikuchi, Y., Jpn. J. Appl. Phys. Short Notes 12, 474 (1973).Google Scholar
7. Chubacji, M., Minakata, M. and Kikuchi, Y., Jpn J.Appl. Phys. Suppl. 2 Pt. 1, 737 (1974).Google Scholar
8. Shiosaki, T., Ohnishi, S. and Kawabata, A., J. Appl. Phys. 50, 3113 (1979).Google Scholar
9. Hayamizu, S., Tabata, H. and Kawai, T., J. Appl. Phys. 80, 787 (1996).Google Scholar
10. Kadota, M., Kasanami, T. and Minakata, M., Jpn. J. Appl. Phys. 32, 2341 (1993).Google Scholar
11. Pardis, E L. and Shuskus, A.J., Thin Solid Films, 38, 131 (1976).Google Scholar
12. Mitsuyu, T., Ono, S. amd Wasa, K., J. Appl. Phys. 51, 2464 (1980).Google Scholar
13. Kinbara, A., Hakumaku (Thin film) (shokabo, Tokyo, 1977), 40 (in Japanese).Google Scholar
14. Voorhoeve, R.J., J. Appl Phys. 43, 4876 (1972).Google Scholar