Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T02:18:08.556Z Has data issue: false hasContentIssue false

Transmission electron microscopy of misfit dislocation and strain relaxation in lattice mismatched III-V heterostructures versus substrate surface treatment

Published online by Cambridge University Press:  20 June 2011

Y. Wang
Affiliation:
CIMAP UMR 6252 CNRS-ENSICAEN-CEA-UCBN, 6, Boulevard du Maréchal Juin, 14050 Caen Cedex, France
P. Ruterana
Affiliation:
CIMAP UMR 6252 CNRS-ENSICAEN-CEA-UCBN, 6, Boulevard du Maréchal Juin, 14050 Caen Cedex, France
L. Desplanque
Affiliation:
Institut d’Electronique, de Microélectronique et de Nanotechnologie, UMR-CNRS 8520, BP 60069, 59652 Villeneuve d’Ascq Cedex, France
S. El Kazzi
Affiliation:
Institut d’Electronique, de Microélectronique et de Nanotechnologie, UMR-CNRS 8520, BP 60069, 59652 Villeneuve d’Ascq Cedex, France
X. Wallart
Affiliation:
Institut d’Electronique, de Microélectronique et de Nanotechnologie, UMR-CNRS 8520, BP 60069, 59652 Villeneuve d’Ascq Cedex, France
Get access

Abstract

High resolution transmission electron microscopy in combination with geometric phase analysis is used to investigate the interface misfit dislocations, strain relaxation, and dislocation core behavior versus the surface treatment of the GaAs for the heteroepitaxial growth of GaSb. It is pointed out that Sb-rich growth initiation promotes the formation of a high quality network of Lomer misfit dislocations that are more efficient for strain relaxation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dutta, P.S., Bhat, H.L., and Kumar, V., J.Appl.Phys. 81, 5821 (1997).Google Scholar
2. Biefeld, R.M., Mater. Sci. Eng. R 36, 105 (2002).Google Scholar
3. Bennett, B.R., Magno, R., Boos, J.B., Kruppa, W., and Ancona, M.G., Solid-State Electron. 49, 18751895 (2005).Google Scholar
4. Vila, A., Cornet, A., Morante, J.R., Ruterana, P., Loubradou, M., Bonnet, R., Gonzalez, Y., and Gonzalez, L., Philos.Mag.A 71, 85 (1993).Google Scholar
5. Vila, A., Cornet, A., Morante, J.R., Ruterana, P., Loudradou, M. and Bonnet, R., J. Appl. Phys. 79, 676 (1996).Google Scholar
6. Qian, W., Skoronski, M., Kaspi, R., Degraef, M., and Dravid, V.P., J. Appl. Phys. 81, 7268 (1997).Google Scholar
7. Joyce, B.A., and Vvedensky, D.D., Mater. Sci. Eng. R 46, 127 (2004).Google Scholar
8. Hytch, M.J., Snoek, E., and Kilaas, R., Ultramicroscopy 74, 131(1998).Google Scholar
9. Kret, S., Ruterana, P., Rosenauer, A., and Gerthsen, D., Phys. Stat. Sol. (b) 227, 247 (2001).Google Scholar
10. Wang, Y., Ruterana, P., Desplanque, L., Kazzi, S.EI, and Wallart, X., J.Appl.Phys. 109, 023509 (2011).Google Scholar
11. Kazzi, S.EI, Desplanque, L., Coinon, C., Wang, Y., Ruterana, P., and Wallart, X., Appl.Phys.Lett. 97, 192111 (2010).Google Scholar
12. Kret, S., Dluzewski, P., Dluzewski, P., and Sobczak, E. J.Phys.:Condens.Mater 12, 10313 (2000).Google Scholar
13. Kret, S., Ruterana, P., and Nouet, G., J.Phys.:Condens.Mater 12, 10249 (2000).Google Scholar
14. Narayan, J., and Oktyabrsky, S., J.Appl.Phys. 92, 7122 (2002).Google Scholar