Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T02:20:36.836Z Has data issue: false hasContentIssue false

Transition Metal Excited States in Silicon

Published online by Cambridge University Press:  26 February 2011

M. Kleverman
Affiliation:
Department of Solid State Physics, University of Lund, Box 118, S-221 00 Lund, Sweden
J. Olajos
Affiliation:
Department of Solid State Physics, University of Lund, Box 118, S-221 00 Lund, Sweden
G. Grossmann
Affiliation:
Department of Solid State Physics, University of Lund, Box 118, S-221 00 Lund, Sweden
H. G. Grimmeiss
Affiliation:
Department of Solid State Physics, University of Lund, Box 118, S-221 00 Lund, Sweden
Get access

Abstract

Recent absorption and photoconductivity studies of deep transition-metal impurities in silicon are discussed, with emphasis on optical transitions from the deep ground state to shallow Coulomb excited states. The P3/2 line spectra of the deep Au and Pt acceptors closely resemble those of group II acceptors in silicon, whereas the P1/2 lines show resonance effects due to interaction with the valence band continuum. Behavior under uniaxial stress is compatible with D2d or C 2y point-group symmetry for the Au and Pt acceptors. A line spectrum in g-dopes Si can be attributed to excitations to shallow donor states since the phononassisted Fano resonances involve characteristic inter-valley phonons. Both the Ag donor spectrum and the corresponding Au spectrum are dominated by excited s-state transitions. Thus, the traditional fingerprint of a donor in silicon, i.e. the effective-mass like p-state series, is missing or at best observed weakly

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Milnes, A. G., Deep impurities in semiconductors (Wiley-Interscience, New York, 1973)Google Scholar
[2]Chen, J. W. and Milnes, A. G., Ann. Rev. Mater. Sci. 10, 157 (1980)Google Scholar
[3] See e.g. Lang, D. V., Grimmeiss, H. G., Meijer, E., and Jaros, M., Phys. Rev. B 22, 3917 (1980) and references therein.Google Scholar
[4]Ledebo, L-Å. and Wang, Zhan-Gou, Appl. Phys. Lett, 42, 680 (1983)Google Scholar
[5] See e.g.Baber, N., Grimmeiss, H. G., Kleverman, M., Omling, P., and Zafar, M., J. Appl. Phys. 62, 2553 (1987) and references therein.Google Scholar
[6]Brotherton, S. D., Bradley, P., and Bicknell, J., J. Appl. Phys. 50, 3396 (1979)Google Scholar
[7]Humphreys, R. G., Herbert, D. C., Holeman, B. R., Tapster, P., and Bickley, W. P.. J. Phys. C, 16,1469 (1983)Google Scholar
[8]Braun, S. and Grimmeiss, H. G., J. Appl. Phys. 45, 2658 (1974)Google Scholar
[9]Janzén, E., Stedman, R., Grossmann, G., and Grimmeiss, H. G., Phys. Rev. B 29, 1907 (1984)Google Scholar
[10]Mazzaschi, J., Brabant, J. C., Brousseau, B., Barrau, J., Brousseau, M., and Voillot, F., Solid St. Commun. 39, 1091 (1981)Google Scholar
[11]Thebault, D., Barrau, J., Brouseau, M., Thanh, Do Xua, Brabant, J. C., Voillot, F., and Ribault, Mme, Solid St. Commun. 45, 645 (1983)Google Scholar
[12]Thebault, D., Barrau, J., Armelles, G., Lauret, N., and Noguier, J. P., Phys. Stat. Sol. (b) 125, 357 (1984)Google Scholar
[13]Armelles, G., Barrau, J., Brousseau, M., Pajot, B., and Naud, C., Solid St. Commun. 56 303 (1985)Google Scholar
[14] Sh. Kogan, M. and Lifshits, T. M.. phys. stat. sol. (a) 39, 11 (1977)Google Scholar
[15]Kleverman, M., Olajos, J., and Grimmeiss, H. G., Phys. Rev. B 35, 4093 (1987)Google Scholar
[16]Kleverman, M., Olajos, J., and Grimmeiss, H. G.. (accepted for publication in Phys. Rev. B)Google Scholar
[17]Sauer, R. and Weber, J., Physica 116B, 195 (1983)Google Scholar
[18]Watkins, G. D. and Fowler, W. D., Phys. Rev. B 16, 4524 (1977)Google Scholar
[19]Janzhn, E., Grossmann, G., Stedman, R., and Grimmeiss, H. G., Phys. Rev. B 31, 8000 (1985)Google Scholar
[20]Onton, A., Fisher, P., and Ramdas, A. K., Phys. Rev. 163, 686 (1967)Google Scholar
[21]Kleverman, M., Grossmann, G., Olajos, J., and Grimmeiss, H. G.. (to be published)Google Scholar
[22]Baron, P., Young, M. H., and McGill, T. C., Solid St. Commun. 47, 167 (1983)Google Scholar
[23]Omling, P., Emanuelson, P., and Grimmeiss, H. G., Phys. Rev B 36, 6202 (1987)Google Scholar
[24]Omling, P., Kleverman, M., Emanuelson, P., Olajos, J., and Grimmeiss, H. G.. (accepted for publication in Solid St. Commun.)Google Scholar
[25]Woodbury, H. H. and Ludwig, G. W., Phys. Rev. 126, 466 (1962)Google Scholar
[26]Postnikov, V. S., Kirillov, V. I., Kapustin, Yu. A., Ammer, S. A., and Kozlov, Yu. I., Sov. Phys. Solid State 20, 2032 (1979)Google Scholar
[27]Ohta, K., Sci. Light 22, 12 (1973)Google Scholar
[28] At least two deeper acceptors and several other electronic lines were detected in the samples used in Ref. 15 in addition to the “pair” lines already observed in Ref. 27.Google Scholar
[29]Kleverman, M., Olajos, J., and Grimmeiss, H. G.. (to be published)Google Scholar
[30]Chandrasekhar, H. R., Fisher, P., Ramdas, A. K., and Rodriguez, S., Phys. Rev. B 8, 3836 (1973)Google Scholar
[31]Kaplyanskii, A. A., Optics Spectrosc., 16, 329 (1964)Google Scholar
[32]Olajos, J., Kleverman, M., and Grimmeiss, H. G.. (to be published)Google Scholar
[33]Alves, J. L. A. and Leite, J. R., Phys. Rev. B 30, 7284 (1984)Google Scholar
[34]Fazzio, A., Caldas, M. J., and Zunger, A., Phys. Rev. B 32, 934 (1985)Google Scholar
[35]Thonke, K., Hangleiter, A., Wagner, J., and Sauer, R., J. Phys. C 18, L795 (1985)Google Scholar
[36]Schad, Hp. and Lassmann, K., Phys. Lett. 56, 409 (1976) and K. R. Elliot, S. A. Lyon, D. L. Smith, and T. C. McGill, Phys. Lett. 70A, 52 (1979)Google Scholar
[37]Watkins, G. D., Physica 117 & 118B, 9 (1983)Google Scholar
[38]Englman, R., The Jahn-Teller Effect in Molecules and Crystals (Wiley-Interscience, London. 1972)Google Scholar