Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T18:03:49.575Z Has data issue: false hasContentIssue false

Transient Thermal Processing of GaAs

Published online by Cambridge University Press:  26 February 2011

S. J. Pearton
Affiliation:
AT&T Bell Laboratories, Murray Hill, N.J. 07974, U.S.A.
J. M. Gibson
Affiliation:
AT&T Bell Laboratories, Murray Hill, N.J. 07974, U.S.A.
D. C. Jacobson
Affiliation:
AT&T Bell Laboratories, Murray Hill, N.J. 07974, U.S.A.
J. M. Poate
Affiliation:
AT&T Bell Laboratories, Murray Hill, N.J. 07974, U.S.A.
J. S. Williams
Affiliation:
Royal Melbourne Institute of Technology, Melbourne, Victoria, 3000, Australia.
D. O. Boerma
Affiliation:
University of Groningen, 9718 CM Groningen, The Netherlands.
Get access

Abstract

A comprehensive review is presented of the use of transient thermal processing for the activation of implanted dopants, the alloying of ohmic contacts, the pulse diffusion of Zn for p+ contacts, and other heat treatments of GaAs. In all cases, transient processing produces results at least as good as furnace heating, and in some instances, markedly better. The special needs of GaAs, such as encapsulation of the wafer surface, and prevention of slip and warpage are discussed, as well as recent results detailing implant damage removal processes during transient annealing.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yokoyama, N., Onodera, H., Ohinshi, H., Shinoki, T. and Nishi, H., IEEE J. Solid-State Circuit SC-19 (1984).Google Scholar
2. Evans, C. A., Deline, V. R., Sigmon, T. W. and Lidow, A., Appl. Phys. Lett. 35 291 (1979).CrossRefGoogle Scholar
3. Thomas, R. N., Hobgood, H. M., Eldridge, G. W., Barrett, D. L. and Braggins, T. T., Solid-State Electron 24 387 (1981).Google Scholar
4. Holmes, D. E., Chen, R. T., Elliot, K. R. and Kirkpatrick, C. G., Appl. Phys. Lett. 40 46 (1982).Google Scholar
5. A. G. Associates, Palo Alto, CA 94303.Google Scholar
6. Chin, P. K. and Pearton, S. J. (unpublished).Google Scholar
7. Seo, K. S., Dhar, S. and Bhattacharya, P. K., Appl. Phys. Lett. 47 500 (1985).CrossRefGoogle Scholar
8. Kanber, H., Cipolli, R. J., Henderson, W. B. and Whelan, J. M., Appl. Phys. 57 4732 (1985).Google Scholar
9. Wilson, M. R., Kosel, P. B. and Geesner, C., presented at The Electrochemical Society, Las Vegas, Nevada meeting, Oct. 13–18 (1985).Google Scholar
10. Kanber, H., Henderson, W. B., Rush, R. C., Siracusa, M. and Whelan, J. M., Appl. Phys. Lett. 47 120 (1985).Google Scholar
11. Cummings, K. D., Pearton, S. J. and Vella-Coleiro, G. P., MRS 1985 Fall meeting, paper B6–4.Google Scholar
12. Nishi, H., Nucl. Instr. Meth in Physics Research, B7/8 395 (1985).CrossRefGoogle Scholar
13. Sealy, B. J., Bensalem, R. and Patel, K. K., Nucl. Instr. Meth. in Physics Research, B6 325 (1985).CrossRefGoogle Scholar
14. Pearton, S. J., Cummings, K. D. and Vella-Coleiro, G. P., J. Electrochem. Soc. 132 2743 (1985).Google Scholar
15. Davies, D. E., Nucl. Instr. Meth. in Physics Research, B7/8 387 (1985).Google Scholar
16. Zabatabaie-Alavi, K., Choudhury, A. N. M. Masum, Fonstad, C. G. and Gelpey, J. C., Appl. Phys. Lett. 43 505 (1983).Google Scholar
17. Pearton, S. J., Cummings, K. D. and Vella-Coleiro, G. P., J. Appl. Phys. 58 3252 (1985).Google Scholar
18. Chakrabarti, U. K., Pearton, S. J. and Cummings, K. D. (unpublished).Google Scholar
19. Dobkin, D. M. and Gibbons, J. F., Appl. Phys. Lett. 44 884 (1984).Google Scholar
20. Pearton, S. J., Hall, R., Jacobson, D. C., Poate, J. M. and Williams, J. S., Appl. Phys. Lett. (in press).Google Scholar
21. Nathan, M. I. and Heiblum, M., Solid-State Electron 25 1063 (1982).Google Scholar
22. Williams, J. S. and Pearton, S. J., Mat. Res. Soc. Symp. Proc. 35 427 (1985).Google Scholar
23. Tiku, S. K., Delaney, J. B., Gabriel, N. S. and Yuan, H. T., Mat. Res. Soc. Symp. Proc. 35 483 (1985).CrossRefGoogle Scholar
24. Gardner, C. R. (unpublished).Google Scholar
25. Nishi, N., Inada, T., Saito, J., Ishikawa, T. and Hiyamizu, S., Japan. J. Appl. Phys. 22 401 (1983).Google Scholar
26. Blunt, R. T., Lamb, M. S. M. and Szweda, R., Appl. Phys. Lett. 47 304 (1985).CrossRefGoogle Scholar
27. Japan Semiconductor Technology News, 3 46 (1984).Google Scholar
28. Lui, S. G. and Narayan, S. Y., J. Electron. Mat. 13 897 (1984).Google Scholar
29. Hiramoto, T., Saito, T. and Ikoma, T., Jap. J. Appl. Phys. 24 493 (1985).Google Scholar
30. Oberstar, J. D. and Streetman, B. G., Thin Solid Films, 103 17 (1983).CrossRefGoogle Scholar
31. Pearton, S. J., Gibson, J. M., Williams, J. S., Jacobson, D. C., Poate, J. M. and Boerma, D. O. (unpublished).Google Scholar
32. Kuzuhara, M., Kohzu, H. and Takayama, Y., Mat. Res. Soc. Symp. Proc. 23 651 (1984).Google Scholar