No CrossRef data available.
Article contents
Transient Phases and their Transition Temperatures of A-Si inNon-Isothermal Processes
Published online by Cambridge University Press: 15 February 2011
Abstract
The heating rate dependence of the phase transition temperature wasformulated based on the temperature dependence of nucleation of a new phase.The glass transition temperature of a-Si was explained in terms of van derWaals fluid of a-Si pseudo-Molecules which are produced by the fragmentationof continuous random networks of Si atoms. Transient phases and theirtransition temperatures as a function of the heating rate are summarized inthe phase diagram.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1994
References
REFERENCES
2)
Baeri, P., Fotti, G., Poate, J.M. and Cullis, A.G., Phys. Rev. Lett.
45, 2036
(1980).Google Scholar
3)
Thompson, M.O., Galvin, G.J., Mayer, J.W., Peercy, P.S., Poate, J.M., Jacobson, D.C., Cullis, A.G. and Chew, N.G., Phys. Rev. Lett.
52, 2360
(1984).Google Scholar
5)
Liu, P.L., Yen, R., Bloembergen, N. and Hodgson, R.T., Appl. Phys. Lett.
34, 864
(1979).Google Scholar
7)
Thompson, M.O., Mayer, J.W., Cullis, A.G., Webber, H.C., Chew, N.G., Poate, J.M. and Jacobson, D.C., Phys. Rev. Lett.
50, 896
(1983).Google Scholar
8)
Evans, P.V., Devaud, G., Kelly, T.F. and Kim, Y-W., Acta. Metall. Mater.
53, 719
(1990).Google Scholar
10)
Narayan, J., White, C.W., Holland, O.W. and Aziz, M.J., J. Appl. Phys.
56, 1821
(1984).Google Scholar
11)
Sinke, W., Saris, F.W., Barbour, J.C. and Mayer, J.W., J. Mater. Res.
1, 155 (1986).Google Scholar
12)
Peercy, P.S., Thompson, M.O. and Tsao, J.Y., Mater. Res. Soc. Symp. Proc.
74, 15 (1987).Google Scholar
13)
Lowndes, D.H., Pennycook, S.J., Jellison, G.E. Jr, Withrow, S.P. and Mashburn, D.N., J. Mater. Res.
2, 648 (1987).Google Scholar
14)
Donovan, E.P., Spaepen, F., Turnbull, D., Poate, J.M. and Jacobson, D.C., Appl. Phys. Lett.
42, 698 (1983); J. Appl. Phys.
57, 1795 (1985).Google Scholar
15)
Murakami, K., Gerritsen, H.C., van Brug, H., Bijkerk, F., Saris, F.W. and van der Wiel, M.J., Phys. Rev. Lett.
56, 655
(1986).Google Scholar
16)
Gerritsen, H.C., van Brug, H., Bijkerk, F., Murakami, K. and van der Wiel, M.J., J. Appl. Phys.
60, 1774
(1986).Google Scholar
17)
Auston, D.H., Surko, C.M., Vekatesan, T.N.C., Slusher, R.E. and Golovchenko, J.A., Appl. Phys. Lett.
33, 437
(1978).Google Scholar
18)
Olson, G.L., Roth, J.A., Nygren, E., Pogany, A.P. and Williams, J.S., Mat. Res. Soc. Symp. Proc.
74, 109
(1987).Google Scholar
19)
Kokorowski, S.A., Olson, G.L., Roth, J.A. and Hess, L.D., Phys. Rev. Lett.
48, 498
(1982).Google Scholar
20)
Narayan, J., Holland, O.W., Eby, R.E., Wortman, J.J., Ozguz, V. and Rozgony, G.A., Appl. Phys. Lett.
43, 957
(1983).Google Scholar
24)
Stiffler, S.R., Evans, P.V. and Greer, A.L., Acta. Metall. Mater.
40, 1617
(1992).Google Scholar
26)
Brodsky, M.H., Title, R.S., Weiser, K. and Pettit, G.D., Phys. Rev. B, 1,
2632 (1970).Google Scholar
35)
Bisaro, R., Magarino, J., Zellama, K., Squelard, S., Germain, P. and Morhange, J.F., Phys. Rev. B, 31,
3568 (1985).Google Scholar
36)
Suzuki, M., Hiramoto, M., Oguiura, M., Kamisaka, W. and Hasegawa, S., Jpn. J. Appl. Phys.
27, L1380
(1988).Google Scholar