Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T08:10:39.587Z Has data issue: false hasContentIssue false

Transient Phase Formation During the Growth of Epitaxial CoSi2 by Annealing of Co/Ti Bi-Layers on (100) Si

Published online by Cambridge University Press:  15 February 2011

D. J. Miller
Affiliation:
Materials Science Division Argonne National Laboratory, Argonne, IL. 60439, USA
T. I. Selinder
Affiliation:
Materials Science Division Argonne National Laboratory, Argonne, IL. 60439, USA
K. E. Gray
Affiliation:
Materials Science Division Argonne National Laboratory, Argonne, IL. 60439, USA
Get access

Abstract

Phase evolution during the annealing of Co/Ti bi-layers on (100) Si has been studied by x-ray diffraction and analytical electron microscopy. X-ray diffraction performed in situ during annealing revealed a reaction pathway involving the formation of a transient phase when epitaxial CoSi2 films were grown. Analytical electron microscopy was used to identify this phase as a spinel-related phase, isostructural with Co2TiO4. This phase grows as a result of the presence of the Ti interlayer and a small amount of oxygen from the annealing ambient. Annealing in vacuum or other purified inert gases yielded polycrystalline CoSi2 films which form via a different reaction pathway that does not involve a spinel phase. This spinel phase may serve both to reduce the native oxide from the underlying Si substrate and to control interdiffusion between Si and Co during the reaction, thereby promoting epitaxial growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Maex, K., Vanhellemont, J., Petterson, S., Lauwers, A., Appl. Surf. Sci. 53, 273 (1991).Google Scholar
2 Jebansinski, R., Manti, S., Vescan, L., Ch. Dieker, Appl. Surf. Sci. 53, 264 (1991).Google Scholar
3 Yalisove, S.M., Tung, R.T., Loretto, D., J. Vac. Sci. Technol. A7 (3), 1472 (1989).Google Scholar
4 Maex, K., Mater. Res. Soc. Symp. Proc. 181, 111 (1990).Google Scholar
5 Mantl, S., Bay, H.L., Appl. Phys. Lett., 61, 267 (1992).Google Scholar
6 Lawrence, M., Dass, A., Fraser, D.B., Wei, C.-S., Appl. Phys. Lett. 58, 1308 (1991).Google Scholar
7 Vantomme, A., Nicolet, M.-A., Theodore, N.D., J. Appl. Phys. 75, 3882 (1994).Google Scholar
8. Ogawa, S., Fair, J.A., Kouzaki, T., Sinclair, R., Jones, E.C., Cheung, N.W., and Fraser, D.B., Mater. Res. Soc. Syrup. Proc. 320, 355 (1994).Google Scholar
9 Hong, F., Rozgonyi, G.A., Patnaik, B.K., Appl. Phys. Lett. 64, 2241 (1994).Google Scholar
10 Ogawa, S., Lawrence, M., Dass, A., Fair, J.A., Kouzaki, T., and Fraser, D.B., Mater. Res. Soc. Symp. Proc. 312, 193 (1993).Google Scholar
11 Selinder, T.I., Miller, D.J., Gray, K.E., Appl. Phys. Lett. 67, 1597 (1995).Google Scholar
12 Beno, M.A., and Knapp, G.S., Rev. Sci. Instrum. 64, 2201 (1993).Google Scholar
13 Selinder, T.I., Roberts, T.A., Miller, D.J., Beno, M.A., Knapp, G.S., Gray, K.E., Ogawa, S., Fair, J.A., Fraser, D.B., J. Appl. Phys. 77 (12), 6730 (1995).Google Scholar