Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T01:36:40.003Z Has data issue: false hasContentIssue false

Transient Enhanced Diffusion of Arsenic by Self-Implantation —The role of As-I clusters—

Published online by Cambridge University Press:  17 March 2011

Ryangsu Kim
Affiliation:
Dept. of Electronics and Information Systems, Osaka University, Osaka, 565-0871JAPAN, [email protected]
Takenori Aoki
Affiliation:
Dept. of Electronics and Information Systems, Osaka University, Osaka, 565-0871, JAPAN
Yoshikazu Furuta
Affiliation:
Dept. of Electronics and Information Systems, Osaka University, Osaka, 565-0871, JAPAN
Hiroyuki Kobyashi
Affiliation:
Dept. of Electronics and Information Systems, Osaka University, Osaka, 565-0871, JAPAN
Jianxin Xia
Affiliation:
Dept. of Electronics and Information Systems, Osaka University, Osaka, 565-0871, JAPAN
Tomoya Saito
Affiliation:
Dept. of Electronics and Information Systems, Osaka University, Osaka, 565-0871, JAPAN
Yoshinari Kamakura
Affiliation:
Dept. of Electronics and Information Systems, Osaka University, Osaka, 565-0871, JAPAN
Kenji Taniguchi
Affiliation:
Dept. of Electronics and Information Systems, Osaka University, Osaka, 565-0871, JAPAN
Get access

Abstract

Transient enhanced diffusion of implanted arsenic in silicon with/without additional self-implantation has been investigated. The experimental results show the suppression of As diffusion with Si self-implantation during initial stage of annealing in contrast to the prediction of conventional models. The results suggest that the arsenic and self-interstitial atoms might form immobile clusters during Si implantation or initial stage of annealing. After the clusters dissolve for further annealing, the transient enhanced diffusion of As increases with silicon implantation dose as expected from the “+1” model. These results clarify that interstitials/ As-I clusters play a major role in transient arsenic diffusion.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Eaglesham, D. J., Stolk, P. A., Gossmann, H.-J., and Poate, J. M., Appl. Phys. Lett. 65, 2305 (1994).10.1063/1.112725Google Scholar
[2] Cowern, N. E. B., Walle, G. F. A. van de, Zalm, P. C., and Vandenhoudt, D. W. E., Appl. Phys. Lett. 65, 2981 (1994).10.1063/1.112483Google Scholar
[3] Takeda, S., Jpn. J. Appl. Phys. 30, L639 (1991).10.1143/JJAP.30.L639Google Scholar
[4] Ural, A., Griffin, P. B., and Plummer, J. D., J. Appl. Phys. 85, 6440 (1999).10.1063/1.370285Google Scholar
[5] Kim, Y., Massoud, H. Z., and Fair, R., J. Electron Mat. 18, 143 (1989).10.1007/BF02657400Google Scholar
[6] Venables, D., Krishnamoorthy, V., Gossmann, H.-J., Lilak, A., Jones, K. S., and Jacobson, D. C., Mat. Res. Soc. Symp. Proc. 469, 315 (1997)10.1557/PROC-469-315Google Scholar
[7] Packan, P. A., and Plummer, J. D., Appl. Phys. Lett. 56, 1787 (1990).10.1063/1.103100Google Scholar
[8] Park, H., and Law, M. E., Appl. Phys. Lett. 58, 732 (1991).10.1063/1.104530Google Scholar
[9] Fair, R. B., Wortman, J. J., and Liu, J., J. Electrochem. Soc. 131, 2387 (1984).10.1149/1.2115263Google Scholar
[10] Sedgwick, T. O., Michel, A. E., Cohen, S. A., Deline, V. R., and Oehrlein, G. S., Appl. Phys. Lett. 47, 848 (1985).10.1063/1.96423Google Scholar
[11] Kwor, R., Kwong, D. L., Ho, C. C., Tsaur, B. Y., and Baumann, S., J. Electrochem. Soc. 132, 1201 (1985).10.1149/1.2114059Google Scholar
[12] Kögler, R., Wieser, E., Otto, G., and Knothe, P., Appl. Phys. A 51, 53 (1990).10.1007/BF00324465Google Scholar
[13] Giles, M. D., J. Electrochem. Soc. 138, 1160 (1991).10.1149/1.2085734Google Scholar
[14] Tamura, M., Hiroyama, Y., Nishida, A., Horiuchi, M., Appl. Phys. A 66, 373 (1998).10.1007/s003390050681Google Scholar
[15] Chao, H. S., Crowder, S. W., Griffin, P. B., and Plummer, J. D., J. Appl. Phys. 79, 2352 (1996).10.1063/1.361162Google Scholar
[16] Xia, J., Saito, T., Aoki, T., Kamakura, Y., and Taniguchi, K., Jpn. J. Appl. Phys. 37, L913 (1998).10.1143/JJAP.37.L913Google Scholar
[17] Rafferty, C. S., Gilmer, G. H., Jaraiz, M., Eaglesham, D., and Gossmann, H.-J.. Appl. Phys. Lett. 68, 2395 (1996).10.1063/1.116145Google Scholar
[18] Chang, R. D., Choi, P. S., Kwong, D. L., Wristers, D., and Chu, P. K., Appl. Phys. Lett. 72, 1709 (1998).10.1063/1.121159Google Scholar
[19] Brindos, R., Keys, P., Jones, Kevin S., and Law, M. E., Appl. Phys. Lett. 75, 229 (1999).10.1063/1.124331Google Scholar