Article contents
Transient current in a-Si:H-based MIS photosensors
Published online by Cambridge University Press: 01 February 2011
Abstract
Large-area amorphous silicon (a-Si:H) sensor arrays are widely used for medical x-ray imaging, nondestructive testing and security screening. Most of the commercially available detectors are of the indirect conversion type, in which an x-ray phosphor screen is optically coupled to an array of a-Si:H sensors. The a-Si:H PIN photodiode and the MIS photoelectric converter are two alternative sensing elements used in these detectors. The major advantage of the MIS structure over PIN is fact that this device has the same layer sequence as the a Si:H TFT switch and therefore, they can be fabricated simultaneously resulting in an effective reduction in the lithography mask count. The main disadvantage of the MIS structure is the higher noise level due to transient dark current. The transient dark current originates from traps at the semiconductor-insulator interface and i-layer bulk defects. In this work we analyze the transient current transport in segmented-gate/SiN/a Si:H/n+/ITO structures under different biasing conditions and temperatures. Using a home-made setup the dark current decay was measured within an interval of 1 second in the temperature range from 294 to 353K. It is found that the dark current component associated with charge trapping at the insulator-semiconductor interface can be largely eliminated by adjusting the bias voltage during the refresh period. Under optimized biasing conditions and elevated temperatures the bulk current component becomes dominant.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2008
References
REFERENCES
- 2
- Cited by