No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
The deep levels in both undoped and Si-doped GaN layer grown by metalorganic chemical vapor deposition have been characterized by photocapacitance and transient capacitance spectroscopy. The increase in the photocapacitance was observed in both GaN samples in the range of 1.8 to 2.2 eV. This is due to the photoionization of carriers from the deep levels associated with the yellow luminescence (YL). In addition, the transient capacitance measurements after the photoionization were also performed in the range of 1.8 to 3.4 eV. The notable transient of capacitance was observed at the photon energies of about 2.1 and 3.4 eV, the former could be associated with the change in the charge state of the YL center and latter might stem from some other defects capturing photogenerated carriers. By using the isothermal capacitance transient spectroscopy (ICTS) analysis, the ICTS peaks due to the deep levels associated with YL were detected at about t = 150 s in both GaN samples. In addition, another ICTS peak was detected only in the Si-doped GaN samples. It is considered that this peak is associated with the deep levels deeper than YL levels and the deeper levels originate from defects induced by Si doping.