Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T19:04:54.907Z Has data issue: false hasContentIssue false

The transformations of the EL6 deep level defect in n-GaAs: Is EL6 a DX-like center?

Published online by Cambridge University Press:  10 February 2011

C.V. Reddy
Affiliation:
Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong
S. Fung
Affiliation:
Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong
C.D. Beling
Affiliation:
Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong
Get access

Abstract

Based on the charge redistribution effect, as observed by the present authors, and the earlier reported large lattice relaxation and persistent photoconductivity phenomena associated with the EL6 defect seen in doped, undoped, semiinsulating(SI) and low temperature grown GaAs LT-GaAs), it is suggested that this defect be classified as a DX-center. A tentative unified atomic model is proposed for all the native defects EL2, EL3, EL5, and EL6 observed in GaAs.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Martin, G.M., Appl. Phys. Lett., 39, 747 (1981).Google Scholar
[2] Mooney, P.M., J.Appl.Phys., 67, RI (1990).Google Scholar
[3] Siegel, W., Kuihnel, G., Schneider, H.A., Witte, H. and Flade, T., J.Appl.Phy., 69, 2245 (1991).Google Scholar
[4] Yasutake, K., Kakiuchi, H., Takeuchi, A., Yoshii, K., and Kawabe, H., J. Mater. Sci.: Materials in Electronics, 8, 239 (1997).Google Scholar
[5] Martin, G.M., Mitonneau, A., and Mircea, A., Electron. Lett., 13, 191 (1977).Google Scholar
[6] Yu, P.W., Robinson, G.D., Sizelove, J. R., and Stutz, C.E., Phys. Rev. B, 49, 4689 (1994).Google Scholar
[7] Darmo, J., Dubecky, F., Kordos, P., and Fbrster, A., Appl. Phys. Lett., 72, 590 (1998).Google Scholar
[8] Cho, H.Y., Kim, E.K., and Min, S.K., J.Appl.Phys., 66, 3038(1989).Google Scholar
[9] Martin, G.M., Estève, E., Langlade, P., and Makram-Ebeid, S., J.Appl.Phys., 56, 2655 (1984).Google Scholar
[10] Samitier, J., Morante, J.R., Giraudet, L., and Gourrier, S., Appl. Phys. Lett., 48, 1138 (1986).Google Scholar
[11] Chantre, A., Vincent, G., and Bois, D., Phys. Rev. B., 23, 5335 (1981).Google Scholar
[12] Mitchel, W.C., and Jimènez, J., J.Appl.Phys., 75, 3060 (1994).Google Scholar
[13] Su, Z. and Farmer, J.W., Appl. Phys. Lett., 59, 1746 (1991).Google Scholar
[14] Fang, Z-Q., Schlesinger, T.E., and Milnes, A.G., J.Appl.Phys., 61, 5047 (1987).Google Scholar
[15] Auret, F.D., Leitch, A.W.R., and Vermaak, J.S., J.Appl.Phys., 59, 158 (1986).Google Scholar
[16] Reddy, C.V., Fung, S., and Beling, C.D., Rev.Sci. Instrum, 67, 257 (1996).Google Scholar
[17] Shiraki, H., Tokuda, Y., and Sassa, K., Mat. Res. Soc. Symp. Proc., 1995, 378, pp. 935–38.Google Scholar
[18] Yakimoa, R., Paskova, T., and Hardalov, Ch., J.Appl.Phys., 74, 6170 (1993).Google Scholar
[19] Kaufmann, U., Klausmann, E., Schneider, J., and Alt, H. Ch., Phys. Rev.B., 43, 12106 (1991).Google Scholar
[20] Dabrowski, J. and Scheffler, M., Phys. Rev. B., 40, 10391 (1989).Google Scholar
[21] von Bardeleben, H.J., Stiévenard, D., Deresmes, D., Huber, A. and Bourgoin, J.C., Phys. Rev. B., 34, 7192 (1986).Google Scholar
[22] Reddy, C.V., Fung, S., and Beling, C.D., Phys. Rev. B., 54, 11 290 (1996).Google Scholar