Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-14T02:26:49.507Z Has data issue: false hasContentIssue false

Towards the Rational Design and Synthesis of Zeolites

Published online by Cambridge University Press:  28 February 2011

Sandra L. Burkett
Affiliation:
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
Mark E. Davis
Affiliation:
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
Get access

Abstract

The mechanisms by which the geometries of organic structure-directing agents are translated into the product pore architectures in the syntheses of pure-silica and high-silica zeolites and of aluminum-rich zeolites are discussed. Two different mechanisms of structure direction and self-assembly via the formation of extended inorganic-organic composite structures or of purelyinorganic structures are proposed for the two different classes of materials. The primary impetus for developing a mechanistic understanding of zeolite synthesis is the ultimate goal of the rational design and synthesis of novel zeolite pore architectures. By considering issues such as hydrophobic hydration behavior of the structure-directing agent and the optimization of inorganic–organic van der Waals interactions, the successful design of structure-directing agents for the synthesis of new zeolite structures may be possible, particularly for high-silica systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Davis, M. E. and Lobo, R. F., Chem. Mater. 4, 756 (1992).Google Scholar
2. Lok, B. M., Cannan, T. R. and Messina, C. A., Zeolites 3, 282 (1983).Google Scholar
3. Helmkamp, M. M. and Davis, M. E., Ann. Rev. Mater. Sci., in press.Google Scholar
4. Goepper, M., Li, H. -X. and Davis, M. E., J. Chem. Soc., Chem. Commun. 1665 (1992).Google Scholar
5. Lobo, R. F., Zones, S. I. and Davis, M. E., in Inclusion Chemistrvy with Zeolites: Nanoscale Materials by Design, edited by Herron, N. and Corbin, D., in press.Google Scholar
6. Gies, H. and Marler, B., Zeolites 12, 42 (1992).Google Scholar
7. Chao, K. J., Lin, J. C., Wang, Y. and Lee, G. H., Zeolites 6, 35 (1986).Google Scholar
8. van Koningsveld, H., van Bekkum, H. and Jansen, J. C., Acta Crystallogr., Sect. B 43, 127 (1987).Google Scholar
9. Burkett, S. L. and Davis, M. E., J. Phys. Chem. 98, 4647 (1994).Google Scholar
10. Lefebvre, F., Sacerdote-Peronnet, M. and Mentzen, B. F., Acad, C. R.. Sci. Paris, Ser. 2 316, 1549 (1993).Google Scholar
11. Dokter, W. H., Beelen, T. P. M., van Garderen, H. F., Rummens, C. P. J., van Santen, R. A. and Ramsay, J. D. F., Colloid Surf. A 85, 89 (1994).Google Scholar
12. Dokter, W. H., Beelen, T. P. M., van Garderen, H. F., van Santen, R. A., Bras, W., Derbyshire, G. E. and Mant, G. R., J. Appl. Cryst., in press.Google Scholar
13. Giesinger, K. L., Gibbs, G. V. and Navrotsky, A., Phys. Chem. Minerals 11, 266 (1985).Google Scholar
14. Petrovic, I., Navrotsky, A., Davis, M. E. and Zones, S. I., Chem. Mater. 5, 1805 (1993).Google Scholar
15. Zones, S. I. and Santilli, D. S., in Proceedings of the Ninth International Zeolite Conference, edited by Von Ballmoos, R., Higgins, J. B. and Treacy, M. M. J. (Butterworth-Heinemann, Montreal, 1992), p. 171.Google Scholar
16. Zones, S. I., Olmstead, M. M. and Santilli, D. S., J. Am. Chem. Soc. 114, 4195 (1992).Google Scholar
17. Lobo, R. F., Pan, M., Chan, I., Li, H. -X., Medrud, R. C., Zones, S. I., Crozier, P. A. and Davis, M. E., Science 262, 1543 (1993).Google Scholar
18. Szostak, R., Handbook of Molecular Sieves (Van Nostrand Reinhold, New York, 1992).Google Scholar
19. Annen, M. J., Young, D., Arhancet, J. P., Davis, M. E. and Schramm, S., Zeolites 11, 98(1991).Google Scholar
20. Delprato, F., Guth, J. L., Anglerot, D. and Zivkov, C. (Société Nationale Elf Aquitaine), European Patent No. 364,352 Al (1989).Google Scholar
21. Delprato, F., Delmotte, L., Guth, J. L. and Huve, L., Zeolites 10, 546 (1990).Google Scholar
22. Kokotailo, G. T. and Ciric, J., in Molecular Sieve Zeolites - I, edited by Flanigen, E. M. and Sand, L. B. (American Chemical Society, Washington, DC, 1971) p. 109.Google Scholar
23. Vaughan, D. E. W., in Catalysis and Adsorption by Zeolites, edited by Ohlmann, G. (Elsevier, Amsterdam, 1991) p. 275.Google Scholar
24. Burkett, S. L. and Davis, M. E., Microporous Mater. 1, 265 (1993).Google Scholar
25. Baerlocher, C., McCusker, L. B. and Chiappetta, R., Microporous Mater. 2, 269 (1994).Google Scholar
26. Arhancet, J. P. and Davis, M. E., Chem. Mater. 3, 567 (1991).Google Scholar
27. Daniels, R. H., Kerr, G. T. and Rollmann, L. D., J. Am. Chem. Soc. 100, 3097 (1978).Google Scholar
28. Rollmann, L. D., in Inorganic Compounds with Unusual Properties - II, edited by King, R. B. (American Chemical Society, Washington, DC, 1979) p. 387.Google Scholar
29. Davis, M. E. and Saldarriaga, C., J. Chem. Soc., Chem. Commun. 920 (1988).Google Scholar
30. Fischer, K., Neues Jahrb. Mineral. Monatsh. 1 (1966).Google Scholar
31. Burkett, S. L., Ph.D. thesis, California Institute of Technology, 1995.Google Scholar
32. Mann, S., Archibald, D. A., Didymus, J. M., Douglas, T., Heywood, B. R., Meldrum, F. C. and Reeves, N. J., Science 261, 1286 (1993).Google Scholar
33. Holwerda, R. A., Wherland, S. and Gray, H. B., Ann. Rev. Biophys. Bioeng. 5, 363(1976).Google Scholar
34. Davis, M. E., in Interfacial Design and Chemical Sensing, edited by Mallouk, T. E. and Harrison, D. J. (American Chemical Society, Washington, DC, 1994) p. 27.Google Scholar