Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T06:36:34.041Z Has data issue: false hasContentIssue false

Towards the Optimization of AMT Barrel Reactors for Silicon Epitaxy

Published online by Cambridge University Press:  10 February 2011

M. Masi
Affiliation:
Dipartimento di Chimica Fisica Applicata-Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 MilanoITALY, [email protected]
G. Radaelli
Affiliation:
Dipartimento di Chimica Fisica Applicata-Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 MilanoITALY, [email protected]
N. Roda
Affiliation:
Dipartimento di Chimica Fisica Applicata-Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 MilanoITALY, [email protected]
P. Raimondi
Affiliation:
Dipartimento di Chimica Fisica Applicata-Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 MilanoITALY, [email protected]
S. Carra
Affiliation:
Dipartimento di Chimica Fisica Applicata-Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 MilanoITALY, [email protected]
G. Vaccari
Affiliation:
MEMC Electronic Materials, Viale Gherzi 31, 28100 Novara ITALY
D. Crippa
Affiliation:
MEMC Electronic Materials, Viale Gherzi 31, 28100 Novara ITALY
Get access

Abstract

In this work, the epitaxial silicon deposition by SiHCl3-hydrogen mixtures in a AMT 7700 barrel reactor was analyzed through a detailed model where a three dimensional flow dynamic was solved by reduction to a two dimensional geometry under cylindrical coordinates. The model was used to investigate the role of the reactor geometry and of the process parameters on the axial deposition uniformity. A comparison with industrial experimental data was also performed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Corboy, J.F. and Pagliaro, R. Jr, RCA Review. 44, 231 (1983).Google Scholar
2. Ayoama, T., Inoue, Y. and Nihira, H., J. Electrochem. Soc. 130, 203 (1983).Google Scholar
3. Ban, V.S., J. Electrochem. Soc. 112, 988 (1965).Google Scholar
4. Narusawa, U., J. Electrochem. Soc. 141, 2072 (1994).Google Scholar
5. Nishizawa, J. and Nihira, H., J. Crystal Growth 45, 82 (1978).Google Scholar
6. Jensen, K.F. in Chemical Vapor Deposition: Principles and Applications, edited by Hitchman, M.L. and Jensen, K.F. (Academic Press, London UK, 1993), p. 31.Google Scholar
7. Jenkinson, J.P. and Pollard, R., J. Electrochem. Soc. 131, 2911 (1984).Google Scholar
8. Masi, M., Carra, S., Morbidelli, M., Scaravaggi, V. and Preti, F., Chem. Eng. Sci. 45, 3551 (1990).Google Scholar
9. Masi, M., Fogliani, S. and Carra, S., J. Physique IV C5, 261 (1995).Google Scholar
10. Hunt, L.P. and Sirtl, E., J. Electrochem. Soc. 119, 1741 (1972).Google Scholar
11. Manke, C.W. and Donaghey, L.F., J. Electrochem. Soc. 124, 561 (1977).Google Scholar
12. Reid, R.C., Prausnitz, J.M. and Sherwood, T.K., The Properties of Gases and Liquids, (McGraw-Hill, New York, NY, 1977).Google Scholar