Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T15:37:56.408Z Has data issue: false hasContentIssue false

Towards an Intrinsic Relationship between Diffusion Coefficients and Microscopic Features of Cements ?

Published online by Cambridge University Press:  21 March 2011

P. Lovera
Affiliation:
Commissariat à l'Energie Atomique, Centre d'Etudes de Saclay, DCC-DESD-SESD, BP 2, F-91191 Gif-sur-Yvette Cédex -France Email: [email protected]
C. Galle
Affiliation:
Commissariat à l'Energie Atomique, Centre d'Etudes de Saclay, DCC-DESD-SESD, BP 2, F-91191 Gif-sur-Yvette Cédex -France Email: [email protected]
P. Le Bescop
Affiliation:
Commissariat à l'Energie Atomique, Centre d'Etudes de Saclay, DCC-DESD-SESD, BP 2, F-91191 Gif-sur-Yvette Cédex -France Email: [email protected]
Get access

Abstract

Long-term behavior of cemented waste packages requires the knowledge of water diffusion coefficients (water is supposed to be the main degradation agent, by solubilization of some chemical compounds). A simple modeling, based on the use of hydration code CEMHYD3D is proposed and validated for pure OPC pastes (sound or degraded) at mass ratio water / cement lying between 0.25 and 0.65. The nature of the porosity available for diffusion and the role of residual anhydrous compounds are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bescop, P. Le, Adenot, F., Gallé, C., Lovera, P., “Dégradation des Matériaux à Base de Liants Hydrauliques en Milieu Saturé - Application au Comportement à Long Terme des Colis Béton”, to be published in ATALANTE 2000 (Avignon, France)Google Scholar
2. Gallé, C., Daïan, J.-F., “Gas Permeability of Unsaturated Cement Based Materials - Application of a Multiscale Network Model”, Magazine of Concrete Research 52(4), pp. 251263 (2000).Google Scholar
3. Vocka, R., Gallé, C., Dubois, M., Lovera, P., “Mercury Intrusion Porosimetry and Hierarchical Structure of Cement Pastes: Theory and Experiment”, Cem. Concr. Res. 30, pp. 521527 (2000).Google Scholar
4. Garboczi, E.J., Bentz, D.P., “Computer Simulation of the Diffusivity of Cement-Based Materials”, J. Mater. Sci, 27, pp. 20832092 (1992)Google Scholar
5. Tognazzi, C., “Couplage Fissuration - Dégradation Chimique dans les Matériaux cimentaires: Caractérisation et Modélisation”, Thesis, INSA Toulouse (1998)Google Scholar
6. Taylor, H.F.W., “Cement Chemistry”, 2nd Edition, Thomas TELFORD Edition, (1997)Google Scholar
7. Taylor, H.F.W., Mohan, K., Moir, G.K., “Analytical Study of Pure Extended Portland Cement Pastes: II, Fly-Ash and Slag-Cement Pastes”, Journal of the American Ceramic Society, Vol. 68 [12], pp. 685690 (1985)Google Scholar
8. Bentz, D.P., “Guide to Using CEMHYD3D: A Three-Dimensional Cement Hydration and Microstructure Development Modelling Package”, NISTIR 5977 (1997)Google Scholar
9. Bentz, D.P., Garboczi, E.J., Snyder, K.A., “A Hard-Core / Soft Shell Microstructural Model for Studying Percolation and Transport in Three-Dimensional Composite Media”, NISTIR 6265, (1999)Google Scholar
10. Adenot, F., “Durabilité du Béton: Caractérisation et Modélisation des Processus Physiques et Chimiques de Dégradation du Ciment”, Thesis, Orléans University (France) (1992)Google Scholar
11. Matte, V., “Durabilité des Bétons à Ultra Hautes Performances - Ràle de la Matrice Cimentaire”, Thesis, Ecole Normale Supérieure de Cachan (France) and Sherbrooke University (Canada), (1999)Google Scholar