Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T02:15:58.307Z Has data issue: false hasContentIssue false

Toward RF System-Level Integration: Process Integration Issues in Sige BICMOS

Published online by Cambridge University Press:  10 February 2011

G. Freeman
Affiliation:
IBM Microelectronics Division, Hopewell Junction, New York
K. Schonenberg
Affiliation:
IBM Microelectronics Division, Hopewell Junction, New York
D. Ahlgren
Affiliation:
IBM Microelectronics Division, Hopewell Junction, New York
S-J. Jeng
Affiliation:
IBM Microelectronics Division, Hopewell Junction, New York
D. Nguyen-Ngoc
Affiliation:
IBM Microelectronics Division, Hopewell Junction, New York
K. Stein
Affiliation:
IBM Microelectronics Division, Hopewell Junction, New York
D. Colavito
Affiliation:
IBM Microelectronics Division, Hopewell Junction, New York
S. Subbanna
Affiliation:
IBM Microelectronics Division, Hopewell Junction, New York
D. Harame
Affiliation:
IBM Microelectronics Division, Hopewell Junction, New York IBM Microelectronics Division, Essex Junction, Vermont
B. Meyerson
Affiliation:
IBM Microelectronics Division, Hopewell Junction, New York IBM Research Division, Yorktown Heights, New York
Get access

Abstract

The SiGe HBT, integrated with CMOS devices on the same chip, will be the first integrated device combination to realize the long-standing technology goal of fabricating RF systems on a chip. It has been demonstrated that the HBT device can replace the standard GaAs front-end of RF systems and take advantage of the reduced cost available from Si technologies in 200–300mm wafers. However, the SiGe HBT can only be part of a large-scale RF system on a chip when, in the same technology, NFETs and PFETs are provided for low power, low frequency digital logic, and a suite of resistors, capacitors, diodes, and inductor passive elements are provided for the high frequency analog circuitry. Furthermore, all these elements must be manufacturable defect-free at medium and high levels of integration.

This paper covers keyprocess integration issues confronting technologists when integrating a SiGe HBT device with the requisite CMOS and passive elements and at the same time maintaining very high GaAs-like performance. Topics to be discussed are 1) a review of high-performance HBT device integration schemes employed to date and integration issues with each scheme, 2)integration issues in epitaxial cleaning and growth techniques, 3) integration issues influencing crystal defects, and 4) integration issues with passive elements. Status of the IBM SiGe BiCMOS technology will be presented to illustrate the first successful integration of this set of devices into a manufacturable process.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Voinigescu, S.P., Tarasewicz, S.W., MacElwee, T. and Ilowski, J., IEEE Proc. IEDM 1995, pp 721724.Google Scholar
2. Saito, M., Ono, M., Fujimoto, R., Tanimoto, H., Ito, N., Yoshitomi, T., Ohguro, T., Momose, H., Iwai, H., IEEE Trans. on Electron Devices, Vol.45, No. 3, March 1997.Google Scholar
3. Ali, F., Gupta, A. and Higgins, A., IEEE Microwave and Millimeter Wave Circuits Symposium, 1996 pp. 6166.Google Scholar
4. Hararne, D., Proc. IEEE BCTM, Sept. 1997, pp 3643.Google Scholar
5. Harame, D.L., Stork, J.M.C., Meyerson, B.S., Hsu, K.Y.-J, Cotte, J., Jenkins, K.A., Cressler, J.D., Restle, P., Crabbe, E.F., Subbanna, S., Tice, T.E., Scharf, B.W., Yasaitis, J.A., IEEE IEDM, Dec 1993, pp 7173.Google Scholar
6. Xiao, P., Jenkins, K., Soyer, M., Ainspan, H., Burghartz, J., Shin, H., Dolan, M., Harame, D., IEEE ISSCC, v 40 Feb. 1997, pp. 124125.Google Scholar
7. Ahlgren, D., Freeman, G., Subbanna, S., Groves, R., Greenberg, D., Malinowski, J., Nguyen-Ngoc, D., Jeng, S.J., Stein, K., Schonenberg, K., Keisling, D., Martin, B., Wu, S., Harame, D.L., Meyerson, B., IEEE BCTM, Sept. 1997, pp. 195197.Google Scholar
8. Tashihiro, T., Hashimoto, T., Sato, F., Hayashi, Y., Tatsumi, T., IEICE Transactions on Electronics E80-C n5, May 1997, pp 707713.Google Scholar
9. Washio, K. et. al., IEEE IEDM, Dec 1997, pp 795798.Google Scholar
10. Terpstra, D., De Boer, W. and Slotboom, J., Solid State Electronics, Vol.41, No. 10, pp. 14931502 1997.Google Scholar
11. Meister, T.F., Schafer, H., Franosch, M., Molzer, W., Aufinger, K., Scheler, U., Walz, C., Stolz, M., Boguth, S., Bock, J., IEEE IEDM Technical Digest 1995, p739.Google Scholar
12. Burghartz, J.N., Sun, J.Y.-C., Stanis, C.L., Mader, S.R., Wamock, J.D., IEEE Trans. Electron Devices, 39 (6), 1992, pp 14771489.Google Scholar
13. Nii, H., Yoshino, T., Itoh, N., Nakajima, H., Sugaya, H., Naruse, H., Katsumata, Y., Iwai, H., IEEE BCTM, Sept. 1997, pp 6871.Google Scholar
14. Schuppen, A., Gruhle, A., Konig, U., Journal of Materials Science: Materials in Electronics 6 (1995) 298305.Google Scholar
15. Harame, D., Comfort, J., Cressler, J., Crabbe, E., Sun, J., Meyerson, B. and Tice, T.., IEEE Trans. on Electron Devices, Vol.42, no. 3, March 1995, pp 469482.Google Scholar
16. Oda, K. and Kiyota, Y., J. Electrochem. Soc. 143, (1996) 2361.Google Scholar
17. Harame, D., Comfort, J., Cressler, J., Crabbe, E., Sun, J., Meyerson, B. and Tice, T.., IEEE Trans. on Electron Devices, Vol.42, no. 3, March 1995, pp 455468.Google Scholar
18. Matthews, J. W. and Blakeslee, A.E., Journal of Crystal Growth 27 (1974) pp. 118125 Google Scholar
19. Tsao, J.Y. and Dodson, B.W., Applied Physics Letters. 53 (10) September 1988.Google Scholar
20. Stiffier, S.R., Comfort, J.H., Stanis, C.L., Harame, D.L., de Fresart, E., J. Applied Physics. 70 (3) August 1991.Google Scholar
21. Vescan, L., Stoica, T., Dieker, C. and Luth, H., Mat. Res. Soc. Symp. Proc. Vol.298. 1993 pp. 4550.Google Scholar
22. Schonenberg, K., Chan, S-W, Harame, D., Gilbert, M., Stanis, C. and Gignac, L., J. Mater. Res., Vol.12, No. 2, Feb 1997 pp. 364370.Google Scholar
23. Jeng, S.J., Ahlgren, D.C., Berg, G.D., Ebersman, B., Freeman, G., Greenberg, D.R., Malinowski, J., Nguyen-Ngoc, D., Schonenberg, K.T., Stein, K.J., Colavito, D., Longstreet, M., Ronsheim, P., Subbanna, S., Harame, D.L., Proc. IEEE BCTM, Sept. 1997, pp 187190.Google Scholar
24. Burghartz, J.N., Soyuer, M., Jenkins, K.A., Kies, M., Dolan, P., Stein, K., Malinowski, J., Harame, D.L. IEEE Journal on Solid State Circuits, vol.32, no. 9, pp. 14401445, 1997.Google Scholar
25. Harame, D., Larson, L., Case, M., Kovacic, S., et al., IEEE IEDM 1995 Technical Digest, pp 731734.Google Scholar
26. Ahlgren, D.C., Gilbert, M., Greenberg, D., Jeng, S.J., Malinowski, J., Nguyen-Ngoc, D., Schonenberg, K., Stein, K., Groves, G., Walter, K., Hueckel, G., Colavito, D., Freeman, G., Sunderland, D., Harame, D., Meyerson, B., IEEE IEDM 1996 Technical Digest, p859 Google Scholar
27. Greenberg, D.R., Rivier, M., Girard, P., Bergeault, E., Moniz, J., Ahlgren, D., Freeman, G., Subbanna, S., Jeng, S.J., Stein, K., Nguyen-Ngoc, D., Schonenberg, K., Malinowski, J., Colavito, D., Harame, D.L., Meyerson, B., IEEE IEDM 1997 Technical Digest, pp 799802.Google Scholar