Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T16:11:00.606Z Has data issue: false hasContentIssue false

Toward bioinspired nanostructures for selective vapor sensing: diverse vapor-induced spectral responses within iridescent scales of Morpho butterflies

Published online by Cambridge University Press:  30 January 2014

Timothy A. Starkey
Affiliation:
Natural Photonics Group, School of Physics, University of Exeter, EX4 4QL, UK.
Peter Vukusic
Affiliation:
Natural Photonics Group, School of Physics, University of Exeter, EX4 4QL, UK.
Radislav A. Potyrailo*
Affiliation:
GE Global Research, 1 Research Circle, Niskayuna, NY 12309, USA.
*
*Corresponding author: [email protected]
Get access

Abstract

The iridescent colors of Morpho butterflies have captured scientific intrigue for over a century. However, only recently photonic structures of the wing scales of Morpho butterflies have inspired new ideas in the diverse areas of technology including sensing. In this study, we performed theoretical and experimental evaluation of vapor-induced reflectance changes of the Morpho scales. These experiments provided additional details of the origin and the magnitude of vapor response selectivity in these natural photonic nanostructures and facilitated our design and fabrication of highly selective biomimetic photonic nanostructures.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Korotcenkov, G., Chemical Sensors: Comprehensive Sensor Technologies. Volume 1: General Approaches. New York: Momemtum Press, 2009.Google Scholar
Fitch, J. P., Raber, E., and Imbro, D. R., “Technology challenges in responding to biological or chemical attacks in the civilian sector.,” Science (80-. )., vol. 302, no. 5649, pp. 1350–4, Nov. 2003.CrossRefGoogle ScholarPubMed
Forbes, P., The Gecko’s Foot: How Scientists are Taking a Leaf from Nature's Book, 1st ed. Harper Perennial, 2006, p. 356.Google Scholar
Vukusic, P. and Sambles, J. R., “Photonic structures in biology,” Nature, vol. 424, pp. 852855, 2003.CrossRefGoogle ScholarPubMed
Kinoshita, S. and Yoshioka, S., Structural Colors in Biological Systems: Principles and Applications, 1st ed. Osaka University Press, 2005.Google Scholar
Starkey, T. and Vukusic, P., “Light manipulation principles in biological photonic systems,” Nanophotonics, vol. 2, no. 4, pp. 289307, 2013.CrossRefGoogle Scholar
Lee, D. W., “Iridescent blue plants,” Am. Sci., vol. 85, no. 1, pp. 5663, 1997.Google Scholar
Vignolini, S., Moyroud, E., Glover, B. J., and Steiner, U., “Analysing photonic structures in plants.,” J. R. Soc. Interface, vol. 10, no. 87, p. 20130394, Oct. 2013.CrossRefGoogle ScholarPubMed
Potyrailo, R. A., Ghiradella, H., Vertiatchikh, A., Dovidenko, K., Cournoyer, J. R., and Olson, E., “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photonics, vol. 1, no. 2, pp. 123128, Feb. 2007.CrossRefGoogle Scholar
Pris, A. D., Utturkar, Y., Surman, C., Morris, W. G., Vert, A., Zalyubovskiy, A. D., Deng, T., Ghiradella, H. T., and Potyrailo, R. A., “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photonics, vol. 6, no. February, pp. 195200, 2012.CrossRefGoogle Scholar
Vukusic, P., Sambles, J. R., Lawrence, C. R., and Wootton, R. J., “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. R. Soc. B Biol. Sci., vol. 266, no. 1427, pp. 14031411, Jul. 1999.CrossRefGoogle Scholar
Potyrailo, R. A., Starkey, T. A., Vukusic, P., Ghiradella, H., Vasudev, M., Bunning, T., Naik, R. R., Tang, Z., Larsen, M., Deng, T., Zhong, S., Palacios, M., Grande, J. C., Zorn, G., Goddard, G., and Zalubovsky, S., “Discovery of the surface polarity gradient on iridescent Morpho butterfly scales reveals a mechanism of their selective vapor response.,” Proc. Natl. Acad. Sci. U. S. A., vol. 110, no. 39, pp. 1556715572, Sep. 2013.CrossRefGoogle Scholar
Yang, H., Jiang, P., and Jiang, B., “Vapor detection enabled by self-assembled colloidal photonic crystals.,” J. Colloid Interface Sci., vol. 370, no. 1, pp. 11–8, Mar. 2012.CrossRefGoogle ScholarPubMed
Potyrailo, R. A., Ding, Z., Butts, M. D., Genovese, S. E., and Deng, T., “Selective Chemical Sensing Using Structurally Colored Core-Shell Colloidal Crystal Films,” IEEE Sens. J., vol. 8, no. 6, pp. 815822, Jun. 2008.CrossRefGoogle Scholar
Jurs, P. C., Bakken, G. a, and McClelland, H. E., “Computational methods for the analysis of chemical sensor array data from volatile analytes.,” Chem. Rev., vol. 100, no. 7, pp. 2649–78, Jul. 2000.CrossRefGoogle ScholarPubMed
Bahram, M., “Mean centering of ratio spectra as a new method for determination of rate constants of consecutive reactions.,” Anal. Chim. Acta, vol. 603, no. 1, pp. 13–9, Nov. 2007.CrossRefGoogle ScholarPubMed
Perkins, J. H., Hasenoehrl, E. J., and Griffiths, P. R., “The use of principal component analysis for the structural interpretation of mid-infrared spectra,” Chemom. Intell. Lab. Syst., vol. 15, no. 1, pp. 7586, May 1992.CrossRefGoogle Scholar
Sanchez, M., Bertran, E., and Sarabia, L., “Quality control decisions with near infrared data,” Chemom. Intell. Lab. Syst., vol. 53, pp. 6980, 2000.CrossRefGoogle Scholar
Wise, B. M., Gallagher, N. B., Shaver, J. M., Windig, W., Koch, R. S., and Version, P. L. S. T., PLS_Toolbox 4.0: for use with MATLAB. Eigenvector Research Inc, 2006.Google Scholar
Land, M. F., “The physics and biology of animal reflectors.,” Prog. Biophys. Mol. Biol., vol. 24, pp. 75106, Jan. 1972.CrossRefGoogle ScholarPubMed
Yoshioka, S. and Kinoshita, S., “Wavelength−selective and anisotropic light−diffusing scale on the wing of the Morpho butterfly,” Proc. R. Soc. B Biol. Sci., vol. 271, pp. 581587, 2004.CrossRefGoogle ScholarPubMed