Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T02:05:18.196Z Has data issue: false hasContentIssue false

Toward a constructive homogenization theory of composite metamaterials

Published online by Cambridge University Press:  01 February 2011

Alexandru I Cabuz
Affiliation:
[email protected]é Montpellier IIGroupe d'Etude des SemiconducteursMontpellier 34095France, Metropolitan
Didier Felbacq
Affiliation:
[email protected], Université Montpellier II, Groupe d'Etude des Semiconducteurs, Montpellier, 34095, France, Metropolitan
Get access

Abstract

In the homogenization of composite metamaterials the role played by the relative positions of the wires and resonators is not well understood, though essential. We present an effective medium approach which can systematically account for these effects. It involves independently homogenizing rows of wires and planes of resonators as slabs with negative permittivity and permeability respectively. The metamaterial is then treated as a 1D single negative anisotropic stack. Using this approach we show that it is in principle possible to satisfy the requirements of Pendry's superlens, [mu]=[epsilon]=-1 , up to losses. We propose a class of structure geometries which seems promising for achieving this holy grail of metamaterial science.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Veselago, V. G., Soviet Physics USPEKHI-USSR 10, 509 (1968).Google Scholar
[2] Pendry, J. B., Phys. Rev. Lett. 85, 3966 (2000).Google Scholar
[3] Pendry, J. B., Holden, A. J., Robbins, D. J., and Stewart, W. J., J. Phys.: Cond. Matt. 10, 4785 (1998).Google Scholar
[4] Schurig, D., Mock, J. J., and Smith, D. R., Appl. Phys. Lett. 88, 041109 (2006).Google Scholar
[5] Belov, P. A., Marques, R., Maslovski, S. I., Nefedov, I. S., Silveirinha, M., Simovski, C. R., and Tretyakov, S. A., Phys. Rev. B 67, 113103 (2003).Google Scholar
[6] Silveirinha, M. O. G. and Fernandes, C. A., IEEE Transactions On Microwave Theory And Techniques 53, 1418 (2005).Google Scholar
[7] Pendry, J. B., Holden, A. J., Robbins, D. J., and Stewart, W. J., IEEE Transactions On Microwave Theory And Techniques 47, 2075 (1999).Google Scholar
[8] O'Brien, S. and Pendry, J. B., J. Phys.: Cond. Matt. 14, 4035 (2002).Google Scholar
[9] Huang, K. C., Povinelli, M. L., and Joannopoulos, J. D., Appl. Phys. Lett. 85, 543 (2004).Google Scholar
[10] Rankinen, J. L., Ph.D. thesis, Pennsylvania State University (2005).Google Scholar
[11] Wiener, O., Abh. Math.-Phys. Königl. Sächs. Ges. 32, 509 (1912).Google Scholar
[12] Aspnes, D. E., American Journal of Physics 50, 704 (1982).Google Scholar
[13] Milton, G. W., Appl. Phys. Lett. 37, 300 (1980).Google Scholar
[14] Bergman, D. J., Phys. Rev. Lett. 44, 1285 (1980).Google Scholar
[15] Marques, R., Medina, F., and Rafii-El-Idrissi, R., Phys. Rev. B 65, 144440 (2002).Google Scholar
[16] Baena, J. D., Marques, R., Medina, F., and Martel, J., Phys. Rev. B 69, 014402 (2004).Google Scholar
[17] Padilla, W. J., arXiv.org:cond-mat/0508307 (2005).Google Scholar
[18] Felbacq, D. and Bouchitt, G., Phys. Rev. Lett. 94, 183902 (2005).Google Scholar
[19] Pokrovsky, A. L. and Efros, A. L., Phys. Rev. Lett. 89, 093901 (2002).Google Scholar
[20] Marques, R. and Smith, D. R., Phys. Rev. Lett. 92, 059401 (2004).Google Scholar
[21] Felbacq, D. and Bouchitt, G., Opt. Lett. 30, 1189 (2005).Google Scholar
[22] Gay-Balmaz, P. and Martin, O. J. F., Journal of Applied Physics 92, 2929 (2002).Google Scholar
[23] Smith, D. R. and Schurig, D., Phys. Rev. Lett. 90, 077405 (2003).Google Scholar
[24] Lekner, J., J. Opt. Soc. Am. A 11, 2892 (1994).Google Scholar
[25] Maslovski, S. I., Tretyakov, S. A., and Belov, P. A., Microwave andOptical Technology Letters 35, 47 (2002).Google Scholar
[26] Markos, P. and Soukoulis, C. M., Opt. Lett. 28, 846 (2003).Google Scholar