Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T17:43:59.550Z Has data issue: false hasContentIssue false

Toughening Mechanisms in Al/Al-SiC Laminated Metal Composites

Published online by Cambridge University Press:  10 February 2011

D. R. Lesuer
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94551
J. Wadsworth
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94551
R. A. Riddle
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94551
C. K. Syn
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94551
J. J. Lewandowski
Affiliation:
Case Western Reserve University, Cleveland, Ohio 44106
W. H. Hunt Jr.
Affiliation:
Alcoa Technical Center, Alcoa Center, PA 15069
Get access

Abstract

The fracture toughness of laminated metal composites consisting of alternating layers of a metal matrix composite (Al6090/SiC/25p) and a monolithic aluminum alloy (Al5182) has been studied as a function of the volume fraction of the component materials. Finite element simulations of the fracture toughness tests have been used to study the mechanisms of crack growth and extrinsic toughening. The mechanisms responsible for toughening in laminated metal composites are described.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Rferences

1. Lesuer, D., Syn, C., Riddle, R., Sherby, O., in Intrinsic and Extrinsic Fracture Mechanisms in Organic Composite Systems, edited by Lewandowski, J. J. and Hunt, W. H. Jr., (The Minerals, Metals &Materials Society, Warrendale, 1995) pp. 93102.Google Scholar
2. Hoffman, P. B., Gibeling, J. C., Scripta Metal. et Matl. 32, 901 (1995).Google Scholar
3. Woodward, R. L., Tracey, S. R., Crouch, I. G., J.de Physique IV 1, 277 (1991).Google Scholar
4. Lesuer, D. R., Syn, C. K., High Performance Materials in Engine Technology, Advances in Science and Technology 9, edited by Vincenzini, P., (Techna, Florence, Italy, 1995) pp. 2738.Google Scholar
5. Syn, C. K., Lesuer, D. R., Sherby, O. D., accepted for publication Matls. Sci. and Eng., (1996).Google Scholar
6. Osman, T. M., Lewandowski, J. J., Scripta Metal. et Mat.l 31, 191 (1994).Google Scholar
7. Wu, S.-X., in ASTM STP 855 , edited by Underwood, J. H., Freiman, S. W., Baratta, F. I. (American Society for Testing and Materials, Phildelphia, 1984) pp. 176192.Google Scholar
8. Syn, C. K., Stoner, S., Lesuer, D. R., Sherby, O. D., in High Merformance Metal and Ceramic Matrix Composites edited by Upadhya, K., (The Minerals, Metals & Materials Society, Warrendale, 1994) pp. 125135.Google Scholar
9. Syn, C. K., Lesuer, D. R., Sherby, O. D., in International Conference on Advanced Synthesis of Engineered Structural Materials, edited by Moore, J. J., Lavernia, E. J. and Froes, F. H., (ASM International, Materials Park, Ohio, 1992) pp. 149156.Google Scholar
10. Riddle, R. A., Lawrence Livermore National Laboratory Report UCRL-93745, The Effect of the Failure Criterion in the Numerical Modeling of Orthogonal Metal Cutting (1987).Google Scholar
11. Ritchie, R. O., Matls. Sci. and Eng. A103, 15 (1988).Google Scholar
12. Ritchie, R. O., Yu, W., in Small Fatigue Cracks, edited by Ritchie, R. O. and Langford, J (The Metallurgical Society, Warrendale, 1986) pp. 167189.Google Scholar
13. Ohashi, Y., Wolfenstine, J., Koch, R., Sherby, O. D., Matls. Sci. and Eng. A151, 37 (1992).Google Scholar
14. Chan, K. S., He, M. Y., Hutchinson, J. W., Matls. Sc. and Eng. A167, 57 (1993).Google Scholar
15. Shaw, M. C., et al., Acta Metal. Et Matl. 42, 4091 (1994).Google Scholar