Hostname: page-component-7bb8b95d7b-l4ctd Total loading time: 0 Render date: 2024-09-12T19:36:46.889Z Has data issue: false hasContentIssue false

Toughening Effect and Oxidation Behavior of MoSi2 -ZrO2 Composites

Published online by Cambridge University Press:  26 February 2011

Karin Gong
Affiliation:
[email protected], Chalmers University of Technology, Materials and Manufacturing Technology, SE-412 96 Gothenburg,Sweden, Gothenburg, SE-412 96, Sweden, +46 31 7721251, +46 31 7721313
Yiming Yao
Affiliation:
[email protected], Chalmers University of Technology, Materials and Manufacturing Technology, Gothenburg, SE-412 96, Sweden
Mats Sundberg
Affiliation:
[email protected], Kanthal AB, Hallstahammar, SE-734 27, Sweden
Xin-Hai Li
Affiliation:
[email protected], Siemens Industrial Turbomachinery AB, Finspong, SE-612 82, Sweden
Erik Ström
Affiliation:
[email protected], Kanthal AB, Hallstahammar, SE-734 27, Sweden
Changhai Li
Affiliation:
[email protected], Chalmers University of Technology, Materials and Manufacturing Technology, Gothenburg, SE-412 96, Sweden
Get access

Abstract

Toughening effect of ZrO2-particles on MoSi2-based materials is one of the important toughening mechanism. In this work, the influence of particle size and volume percentage of unstabilized ZrO2-addition on toughening in MoSi2-matrix composites was studied. The measured data revealed that the fine particle size, < 1 ìm, with certain volume percentages around 20% have given more effective toughening results. The tested materials were prepared by two different sintering processes: pressure-less sintering (PLS) and PLS + Hipping sintering. The results on sintered density, RT-hardness and RT-toughness indicated that the PLS process could be a practical and economical method for producing MOSi2-ZrO2 composites in industry. Oxidation behavior of MoSi2-ZrO2 composites was also studied in the work. Clearly, the ZrO2-addition made the composites having a worse oxidation resistance than the monolithic MoSi2, which means that a low ZrO2-addition should be used in the composites, as far as an acceptable toughening effect was reached.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Aikin, R. M. Jr., Scripta Metall., Vol.26, 1992, P.1025.10.1016/0956-716X(92)90224-3Google Scholar
[2] Frankwicz, P. S and Perepezko, J. H., High-Temperature Ordered Intermetallic Alloys IV, Eds. Johnson, L. A. et al, (MRS Pittsburgh, PA, 1991), Vol.213, P.169.Google Scholar
[3] Boettinger, W. J., Perepezko, J. H. and Frankwicz, P. S., Mater. Sci. and Eng., A155, 1992, P.33.Google Scholar
[4] Chin, S., Anton, D. L., and Giamei, A. F., High Temperature Silicide and Refractory Alloys, Eds. Briant, C. L. et al, (MRS Pittsburgh, PA, 1994), Vol.322, P.423.Google Scholar
[5] Frankwicz, P. S. and Perepezko, J. H., and Anton, D. L., High Temperature Silicide and Refractory Alloys, Eds. Baker, I et al, (MRS Pittsburgh, PA, 1993), Vol.288, P.159.Google Scholar
[6] Harada, Y., Funato, Y., Morinaga, M., Ito, A. and Sugita, Y., J. of Japan Inst. Metals, Vol.58, 1994, P.1239.10.2320/jinstmet1952.58.11_1239Google Scholar
[7] Nowotny, H., Kieffer, R. and Hschachner, , Monatsh Chem., Vol.83, 1952, P.1243.Google Scholar
[8] Danqing, Yi, Zonghe, Lai, Changhai, Li, Akselsen, O. M. and Ulvensoen, J. H., “Ternary alloying study of MoSi2, Metallurgical and Materials Transactions A, Vol.29A, 1998, P.119.Google Scholar
[9] Harada, Y., Murata, Y., and Morinaga, M., Intermetallics, Vol.6, 1998, P.529.Google Scholar
[10] Yi, DanQing, Doctoral thesis “Structural Silicides – Processing, Microstructure and Toughness”, Chalmers University of Technology, 1997.Google Scholar
[11] Meschter, P. J. and Schwartz, D. S., JOM, Non. 1989, P.52. [12]10.1007/BF03220384Google Scholar
[12] Petrovic, J. J. and Honnell, R. E., J. Mater. Sci. 25 (1990) P.4453.10.1007/BF00581107Google Scholar
[13] Petrovic, J. J., Honnell, R. E. and Mitchell, T. E., Ceram. Eng. Sci. Proc. 12 9–10 pp. (1991) P.1633.Google Scholar
[14] Petrovic, J. J., Bhattacharya, A. K., Honnell, R. E., Wade, R. K. and McClellan, K. J., Mater. Sci. and Engi., A155 (1992) P.259.Google Scholar
[15] Bhattacharya, A. K., J. Mater. Sci. Lett. 12 (1993) P.372.Google Scholar
[16] Toshihiro, Yamada, Ken, Hirota and Osamu, Yamaguchi, Mater. Res. Bull., Vol.30, No.7 (1995) P.851.Google Scholar
[17] Suzuki, Y., Sekino, T. and Niihara, K., Scripta Metall. et Mater. Vol.33, No.1 (1995) P.69.Google Scholar
[18] Petrovic, J. J., Mater. Sci. Eng., Vol.A192/193, 1995, P.31.10.1016/0921-5093(94)03246-7Google Scholar
[19] King, H. W., Pho, I. and Walker, P. A., Advanced Ceramics for Structural and Tribological Applications, 1995, P.629.Google Scholar
[20] Soboyejo, W., Brooks, D., Chen, Long-Ching and Lederich, R., J. Am. Ceram. Soc., Vol.78, No.6, 1995, P.1481.Google Scholar
[21] Danqing, Yi and Changhai, Li, Mater. Scie. Eng. Vol.A261, 1999, P.89.Google Scholar
[22] Petrovic, J. J., Intermetallics, Vol.8, 2000, P.1175.Google Scholar
[23] Anstis, G. R., Chantikul, P., Lawn, B. R., and Marshall, D. B., J. Am Ceram. Soc.. Vol.64, 1981, P.533 10.1111/j.1151-2916.1981.tb10320.xGoogle Scholar
[24] Claussen, N. and Ruhle, M., Advances in Ceramics Vol.3, Science and Technology of Ziconia, The Am. Ceram. Soc., Columbus, Ohio, 1981, P.137.Google Scholar
[25] Liu, Y. Q., Shao, G., Tsakiropoulos, P., ON the oxidation behaviour of MoSi2, Intermetallics, 9 (2001) 125136.Google Scholar
[26] Ramberg, C. Eric and Worrell, Wayne L., Oxidation kinetics and composite scale formation in the system Mo(Al, Si)2, J. Am. Ceram. Soc., 85 [2] (2002) 444452.Google Scholar