Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T15:49:02.546Z Has data issue: false hasContentIssue false

Topographic Kinetics and Practice of Low Angle Ion Beam Thinning

Published online by Cambridge University Press:  21 February 2011

Árpád Barna*
Affiliation:
Research Institute for Technical Physics of the Hungarian Academy Sciences, 1325 Budapest, Ujpest, POB 76. Hungary
Get access

Abstract

The thinning technique is based on a simple geometrical model, describing the changes in the surface topography during ion beam etching. A high ion beam density makes jt possible that a thinning with an incidence angle of 0.5–7° ( measured from the sample surface) can take place within a reasonable time. Our method is applicable to a wide range of materials and to XTEM preparation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Goodhew, P.J., Thin foil preparation for electron microscopy, in Practical methods in electron microscopy, Ed., Glauert, A.M., Elsevier, 1985, Amsterdam.Google Scholar
2. Hauffe, W.: Thesis B (Technische Universität, Dresden 1978), Patent DD 139670 (1977), Proc. of the Eight European Congr. on Electron Microscopy, Budapest, Hungary 1984, Eds., Csanády, A., Röhlich, P. and Szabó, D., Vol.1, p.105 .Google Scholar
3. Moens, M., Adams, F.C. and Simons, D.S., Anal.Chem., 59, 1518 (1987).Google Scholar
4. Carter, G., Katardjiev, I.V., Nobes, M.J. and Whitton, J.L., Mat.Sci.and Eng. 90, 2132 (1987).CrossRefGoogle Scholar
5. Auciello, O. and Kelly, R., Ion bombardment modification of surfaces, Elsevier Amsterdam, 1984.Google Scholar
6. Wehner, G.K., J.Vac.Sci.Technol. A 3, 1821 (1985).CrossRefGoogle Scholar
7. Kubby, J.A. and Siegel, B.M., Nuc.Instr.and Met.in Phys.Res. B13, 319 (1986).Google Scholar
8. Tagg, M.A., Smith, R. and Walls, J.M., Journal of Mat.Sci. 21, 123 (1986).CrossRefGoogle Scholar
9. Andersen, H.H. and Bay, H.L., in Sputtering by Particle Bombardment I, Ed., Behrisch, R., Springer-Verlag Berlin 1981.Google Scholar
10. Malicsko, L., Barna, A., Scholz, R., Cryst.Res.Technol. 23, 223 (1988).CrossRefGoogle Scholar
11. Barna, A., Barna, P.B. and Zalar, A., Vacuum 40, 115 (1990).CrossRefGoogle Scholar
12. Roosendaal, H.J., in Sputtering by Particle Bombardment I, Ed., Becrisch, R., Springer-Verlag Berlin 1981.Google Scholar
13. Barna, A., Barna, P.B. and Zalar, A., Surf.and Interface Analysis, Vol.12, 144 (1988).Google Scholar
14. Barna, A., Proc.of the Eight European Congr. on Electron Microscopy, Budapest, Hungary 1984, Eds., Csanády, A., Röhlich, P. and Szabó, P., Vol.1, p.107.Google Scholar
15. Cong-Xin, R., Guo-Ming, C., Xin-Ding, F., Jie, Y., Hong-Li, F. and Shih-Chang, T., Radiation Effects, 77, 177 (1983).CrossRefGoogle Scholar
16. Bulle-Lieuwma, C.W. and Zalm, P.C., Surf.and Interface Analysis, 10, 210 (1987).Google Scholar
17. Yokota, Y., Hashimoto, H., Song, M. and Awaji, M., Japanese Journal of Applied Physics, 29, 739 (1990).CrossRefGoogle Scholar
18. Duncan, S., Smith, R., Sykes, D.E. and Walls, J.M., Vacuum, 34, 145 (1984).Google Scholar
19. Motohiro, T. and Taga, Y., Thin Solid Films, 147, 153 (1987).Google Scholar
20. Yao, J.Y. and Dunlop, G.L., Journal of Electron Microscopy Technique, 19, 90 (1991).CrossRefGoogle Scholar
21. Garulli, A., Armigliato, A., Vanzi, M., Journal Microsc. Spectrosc. Electron., 10 135 (1985).Google Scholar
22. Lidbury, D.P.G., Pettit, H.R. and Booker, G.R., Electronic Engineering, 50, (1971).Google Scholar
23. Bravman, J.C. and Sinclair, R., Journal of Electron Microscopy Technique, 1, 53 (1984).Google Scholar