Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-14T02:30:31.349Z Has data issue: false hasContentIssue false

Top Layer Oxidation In Mo/SI Multilayer X-Ray Mirror

Published online by Cambridge University Press:  15 February 2011

Khanh Nguyen
Affiliation:
Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA 94720 Center for X-ray Optics, Lawrence Berkeley Laboratory, Berkeley, CA 94720
Eric Gullikson
Affiliation:
Center for X-ray Optics, Lawrence Berkeley Laboratory, Berkeley, CA 94720
James Underwood
Affiliation:
Center for X-ray Optics, Lawrence Berkeley Laboratory, Berkeley, CA 94720
Get access

Abstract

Reflectivity of Mo/Si multilayer x-ray mirrors with molybdenum as the top layer decreased over time when stored in air due to oxidation of the top Mo layer to MoO3 and MoO2. High reflectivity can be maintained by having silicon as the top layer. In fact, reflectivity of Si-top multilayer coatings increase slightly during the first few days after deposition.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bjorkholm, J. E., Bokor, J., Freeman, R. R., Gregus, J., Jewell, T. E., Mansfield, W. M., MacDowell, A. A., Rabb, E. L., Silvast, W. T., Szeto, L. H., Tennant, D. M., Waskiewicsz, W. K., White, D. L., Windt, D. L., Wood, O. R. II, Brunning, J. H., “Reduction imaging at 14 nm using multilayer-coated optics: printing of features smaller than 0.1 μm,” J. Vac. Sci. Technol. B 8(6), 15091513 (1990).Google Scholar
2. Jewell, T. E., “Reflective systems design study for soft x-ray projection lithography,” J. Vac. Sci. Technol. B 8(6), 15191523 (1990).Google Scholar
3. Ceglio, N. M. and Hawryluk, A. M., “Soft x-ray projection lithography system design,” in OSA Proceedings on Soft x-ray projection lithographjy, edited by Bokor, J. (OSA, Washington, D. C., 1991), p. 5.Google Scholar
4. Kortright, J. B., Stearns, D. G., Windt, D. L., Physics of Multilayer Structures, Opt. Soc. Am. Tech. Digest 7 (OSA, Washington, D. C., 1992).Google Scholar
5. Stearns, D. G. and Rosen, S. P., Vernon, S. P., “Multilayer miror technology for soft x-ray projection 143 lithography,” to appear in Applied Optics.Google Scholar
6. Underwood, J. H., Gullikson, E. M. and Nguyen, K. B., “Tarnishing of Mo/Si multilayer x-ray mirrors,” to appear in Applied Optics.Google Scholar
7. Gullikson, E. M., Underwood, J. H., Batson, P. C., Nikitin, V., “A soft x-ray/EUV reflectometer based on a laser produced plasma source,” J. X-ray Sci. Technol. 3,283299 (1992).Google Scholar
8. Wagner, C. D., Riggs, W. M., Davis, L. E., Moulder, J. F., Mullenberg, G. E., Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer Corp., Minnesota, 1979).Google Scholar
9. Rosen, R. S., Stearns, D. G., Viliardos, M. A., Kassner, M. E., Vernon, S. P., and Cheng, Y., “Silicide layer growth rates in Mo/Si multilayers,” to be published in Applied Optics.Google Scholar
10. Kortright, J. B., Joksch, St., Ziegler, E., “Stability of tungsten/carbon and tungsten/silicon multilayer x-ray mirrors under thermal annealing and x-radiation exposure,” J. Appl. Phys. 69(1), 168 (1991).Google Scholar