Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T07:49:25.144Z Has data issue: false hasContentIssue false

Titaniun Silicide Formation on Heavily Doped Arsenic-Implanted Silicon

Published online by Cambridge University Press:  22 February 2011

D. W. Marsh
Affiliation:
General Electric Corporate Research and Development, PO Box 8, Schenectady, NY 12301
G. A. Smith
Affiliation:
General Electric Corporate Research and Development, PO Box 8, Schenectady, NY 12301
N. Lewis
Affiliation:
General Electric Corporate Research and Development, PO Box 8, Schenectady, NY 12301
T. P. Chow
Affiliation:
General Electric Corporate Research and Development, PO Box 8, Schenectady, NY 12301
W. Katz
Affiliation:
General Electric Knolls Atomic Power Laboratory, Schenectady, NY
Get access

Extract

Every new generation of metal/oxide/semiconductor (MOS) technology has achieved higher densities and switching speeds. In order to match these characteristics of MOS circuits, a metallization which has a low resistivity, has electrical and chemical stability, can withstand high-temperature processing and can be manufactured relatively easily and reliably is needed. These requirements make the refractory metals a suitable if not ideal choice [1,2]. However, there has been some question as to the reliability of processing during silicide formation when using refractory metals. When the metallization is used to form self-aligned silicide structures over heavily doped source and drain regions, it is crucial to understand the subsequent behavior of the dopant during the processing period. Whereas others have studied different aspects of dopant redistribution [3–8], we report in this paper a systematic study of the electrical, structural, and elemental properties of titanium silicide formation on arsenic implanted silicon as a function of implanted dose and processing temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Murarka, S. P., Silicides for VLSI Applications (Academic Press, New York; 1983).Google Scholar
2. Chow, T. P. and Steckl, A. J., IEEE Trans. Electron Devices, ED–30 (1983) 1480.CrossRefGoogle Scholar
3. Wittmer, M. and Tu, K. N., Phys. Rev. B29 (1984) 2010.CrossRefGoogle Scholar
4. Amano, J., Merchant, P., and Koch, T., Appl. Phys. Lett. 44 (1984) 744.CrossRefGoogle Scholar
5. Wittmer, M., Ting, C.-Y., and Tu, K. N., Thin Solid Films 104 (1984) 191.CrossRefGoogle Scholar
6. Ostling, M., Petersson, C. S., Chatfield, C., Norstrom, H., Runovc, F., Buchta, R., and Wiklund, P., Thin Solid Films 110 (1984) 281.CrossRefGoogle Scholar
7. Revesz, P., Gyimesi, J., and Zsoldos, E., J. Appl. Phys. 54 (1984) 1860.CrossRefGoogle Scholar
8. Park, H. K., Sachitano, J., McPherson, M., Yamaguchi, T., and Lehman, G., J. Vac. Sci Technol. A2 (1984) 264.CrossRefGoogle Scholar
9. Chow, T. P., Katz, W. and Smith, G., Appl. Phys. Lett. 46 (1985) 41.CrossRefGoogle Scholar
10. Standard Powder Diffraction Pattern 18–1395.Google Scholar
11. Standard Powder Diffraction Pattern 31–1405.Google Scholar
12. Standard Powder Diffraction Pattern 29–1362.Google Scholar
13. Cooper, C. B. III, Powell, R. A., and Chow, R., J. Vac. Sci. Technol. B2 (1984) 718.CrossRefGoogle Scholar
14. Lien, C.-D. and Nicolet, M-A., J. Vac. Sci. Technol. B2 (1984) 738.CrossRefGoogle Scholar
15. Hung, L. S., Gyulai, J., Mayer, J. W., Lau, S. S., and Nicolet, M-A., J. Appl. Phys. 54 (1983) 5076.CrossRefGoogle Scholar
16. Pan, P., Hsieh, N., Geipel, H. J. Jr., and Slusser, G. J., J. Appl. Lett. 53 (1982) 3059.Google Scholar
17. Jahnel, F., Biersack, J., Crowder, B. L., d'Heurle, F. M., Fink, D., Isaac, R. D., Lucchese, C. J., and Petersson, C. S., J. Appl. Lett. 53 (1982) 7372.Google Scholar
18. Wei, C.-Y., Katz, W., and Smith, G., Thin Solid Films 104 (1983) 203.CrossRefGoogle Scholar
19. Chow, T. P., Katz, W., and Smith, G., J. Electrochem. Soc. (in press).Google Scholar
20. Beyers, Robert and Sinclair, Robert, J. Appl. Phys. 57 (1985) 5240.CrossRefGoogle Scholar