Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T15:34:32.849Z Has data issue: false hasContentIssue false

Titanium Silicides and their Technological Applications

Published online by Cambridge University Press:  03 September 2012

L.A. Clevenger
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598
R.W. Mann
Affiliation:
IBM Microelectronics, Essex Junction, VT 05452
Get access

Abstract

Titanium silicides are used as source, gate and drain contacts and local interconnections in CMOS integrated circuits. In these applications, it is important that the titanium silicide phase have a low resistivity (< 20μΩ-cm) and not agglomerate during high temperature processing. The Ti/Si system has two silicide phases that are useful for electronic applications, high resistivity C49-TiSi2 (60-70 μΩ-cm) which forms at 600 - 700°C and low resistivity (15-20 μΩ-cm) C54-TiSi2 which forms from 700 to 850°C. This paper will review how the size of the thermal annealing process window for forming low resistivity C54-TiSi2 from high resistivity C49-TiSi2 without having the silicide agglomerate varies with annealing treatments, electronic dopants, and contact size. In addition, processing methods to improve the size of the process window will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Maex, K., Mater. Sci. Eng., R11, 53 (1993)Google Scholar
2. Murarka, S.P., Silicides for VLSI Applications, (Academic, Orlando, 1983)Google Scholar
3. Mann, R.W. and Clevenger, L.A., in press, J. Electro Chem. Soc.Google Scholar
4. Osburn, C.M., Wang, Q.F., Kellam, M., Canovai, C., Smith, P.L., McGuire, G.E., Xiao, Z.G. and Rozgonyi, G.A., Appl. Sur. Sci., 53, 291 (1991)Google Scholar
5. Scott, D.B., Chapman, R.A., Wei, C., Mahant-Shetti, S.S, Haken, R.A., and Holloway, T.C., IEEE Trans. Electron Devices, 34, 562, (1987)Google Scholar
6. Yamaguchi, Y., Nishimura, T., Akasaka, Y., and Fujibayashi, K., IEEE Trans. Electron Devices, 34, 1179 (1992)CrossRefGoogle Scholar
7. Mann, R.W., Racine, C.A. and Bass, R.S., Mat. Res. Soc. Symp. Proc., 274, 115 (1991)Google Scholar
8. Lasky, J.B., Nakos, J.S., Cain, O.J., and Giess, P.J., IEEE Electron Devices, 38, 262, 1991 CrossRefGoogle Scholar
9. Clevenger, L.A., Harper, J.M.E., Cabral, C. Jr., Nobili, C., Ottaviani, G., and Mann, R.W., J. Appl. Phys., 72, 4978 (1992)Google Scholar
10. Mann, R.W., Clevenger, L.A. and Hong, Q.Z., J. Appl. Phys., 73, 3566 (1993)Google Scholar
11. Clevenger, L.A. and Mann, R.W., unpublished resultsGoogle Scholar
12. Matsubara, Y., Hariuchi, T., and Okumuro, K., Appl. Phys. Lett., 62, 2534 (1993)CrossRefGoogle Scholar
13. Li, X.-H., Carlsson, R.A., Gong, S.F. and Hentsell, H.T.G., J. Appl. Phys., 72, 514 (1992)Google Scholar
14. Thompson, R.D., Takai, H., Psaraa, P.A., and Tu, K.N., J. Appl. Phys., 61, 540 (1987)CrossRefGoogle Scholar
15. Agnello, P.D. and Fink, A., J. Electronic Materials, 22, 661 (1993)CrossRefGoogle Scholar
16. Ganin, E., Wind, S., Ronsheim, P., Yapsir, A., Barmak, K., Bucchignon, J., and Assenza, R., Mat. Res. Symp. Proc., 302, 109 (1993)Google Scholar
17. Blair, C., Demirlioglu, E., Yoon, Y. and Pierce, J., to be published in Proceedings of Symposium D: Silicides, Germanides and Their Interfaces, Fall 1993 MRSGoogle Scholar
18. Nishiyama, A., Akaska, Y., Ushiku, Y., Hishioka, K., Suizu, Y. and Shiozaki, M., Proc. IEEE VLSI Multilevel Interconnection Conference, 1990, p. 310 Google Scholar