Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T02:27:47.257Z Has data issue: false hasContentIssue false

A Titanium Salicide Process Suitable for Submicron CMOS Applications

Published online by Cambridge University Press:  03 September 2012

C. Blair
Affiliation:
Fairchild Research Center, National Semiconductor Corporation M/S E100, P.O. Box 58090 Santa Clara, CA 95052-8090, U.S.A
E. Demirlioglu
Affiliation:
Fairchild Research Center, National Semiconductor Corporation M/S E100, P.O. Box 58090 Santa Clara, CA 95052-8090, U.S.A
E. Yoon
Affiliation:
Fairchild Research Center, National Semiconductor Corporation M/S E100, P.O. Box 58090 Santa Clara, CA 95052-8090, U.S.A
J. Pierce
Affiliation:
Fairchild Research Center, National Semiconductor Corporation M/S E100, P.O. Box 58090 Santa Clara, CA 95052-8090, U.S.A
Get access

Abstract

This paper reports a titanium salicide process capable of fabricating low resistance salicide (<5 ohms/sq.) on narrow polysilicon leads (line widths less than 0.35 μm) which are heavily doped with arsenic and boron. The process utilizes conventional processing but avoids excessive vertical scaling of the titanium silicide film. The process has been demonstrated on a 0.35 μm CMOS technology and results show that a process window exists which is suitable for technologies of 0.35 μm and below. The most serious scaling issue for titanium salicide appears to be the silicide film thickness.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ganin, E., Wind, S., Ronsheim, P., Yapsir, A., Barmak, K., Bucchignano, J. and Assenza, R. in Mater. Res. Soc. Symp. Proc. 164 (1992).Google Scholar
2. Maex, K., Appl. Surf. Sci. 53, 328 (1991).Google Scholar
3. Lasky, J., Nakos, J., Cain, O. and Geiss, P., IEEE Trans. Elec. Dev. 38, 262 (1991).CrossRefGoogle Scholar
4. Norstrom, H., Maex, K., Romano-Rodriguez, A., Vanhellemont, J. and hove, L. Van del, Micro. Engr. 14, 327 (1991).Google Scholar
5. Matsubara, Y., Horiuchi, T. and Okumura, K., AppI. Phys. Lett. 62, 2634 (1993).Google Scholar
6. Park, H. K., Sachitano, J., McPherson, M., Yamaguchi, T. and Lehman, G., J. Vac. Sci. Technol. A 2, 264 (1984).Google Scholar
7. Demirlioglu, E., Yoon, E., Pierce, J., Blair, C., Moberly, L., Geha, S., Wei, J., Chiari, R., Chen, K., Kuo, C., Sadjadi, R., Brown, K., Sethna, P., Bariya, a. and Rochetta, S. Della, to be presented at Ind. Conf. on VLSI and CAD (1993).Google Scholar
8. Nolan, T. P., Sinclair, R. and Beyers, R., J. Appl. Phys 71, (1992).Google Scholar