Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T01:33:28.671Z Has data issue: false hasContentIssue false

Titanium Coatings on AISI 316L Stainless Steel Formed by Thermal Decomposition of TiH2 in Vacuum

Published online by Cambridge University Press:  01 February 2011

Jorge López-Cuevas
Affiliation:
CINVESTAV-IPN Unidad Saltillo, Ramos Arizpe, 25900 Coah., México
José L. Rodríguez-Galicia
Affiliation:
CINVESTAV-IPN Unidad Saltillo, Ramos Arizpe, 25900 Coah., México
Juan C. Rendón-Angeles
Affiliation:
CINVESTAV-IPN Unidad Saltillo, Ramos Arizpe, 25900 Coah., México
Martín I. Pech-Canul
Affiliation:
CINVESTAV-IPN Unidad Saltillo, Ramos Arizpe, 25900 Coah., México
Juan Méndez-Nonell
Affiliation:
CINVESTAV-IPN Unidad Saltillo, Ramos Arizpe, 25900 Coah., México CIQA, Saltillo, 25253 Coah., México
Get access

Abstract

Ti-coated AISI 316L stainless steel, for potential biomedical applications, is obtained by thermal decomposition of TiH2 under vacuum. The presence of hydrogen in the coating material facilitates the sintering process of Ti particles, with simultaneous formation of several inter-diffusion layers at the substrate/coating interface, whose thickness and chemical composition depend mainly on the treatment temperature. Coatings prepared at 1100°C exhibit formation of a wide zone at the substrate/coating interface, which is associated with the appearance of cracks, and which consists of a mixture of λ + χ + α-Fe phases. Formation of abundant microporosity is also observed in this region, which is attributed to the Kinkerdall effect.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gotman, I. and Gutmanas, E.Y., J. Mater. Sci. Lett. 9, 813 (1990).Google Scholar
2. Klochko, M.A., and Casey, E.J., J. Power Sources 2, 201 (1978).Google Scholar
3. Banhart, J. Int. J. Vehicle Des. 37, 114 (2005).Google Scholar
4. Vargas, G., Méndez, M., Méndez, J., and Salinas, A., U.S. Patent 5, 482, 731 (1996).Google Scholar
5. Fathi, M.H., Salehi, M., Saatchi, A., Mortazavi, V. and Moosavi, S.B., Dent. Mater. 19, 188 (2003).Google Scholar
6. He, P., Zhang, J., Zhou, R. and Li, X. Mater. Charact. 43, 287 (1999).Google Scholar
7. Li, B.-Y., Rong, L.-J., Li, Y.-Y. and Gjunter, V.E., Intermetallics 8, 881 (2000).Google Scholar
8. Liu, J.-X., Yang, D.-Z., Shi, F. and Cai, Y.-J. Thin Solid Films 429, 225 (2003).Google Scholar
9. El-Dahshan, M.E., Shams, A.M., Din, El, and Haggag, H.H., Desalination 142, 161 (2002).Google Scholar
10. Wasnik, D.N., Dey, G.K., Kain, V. and Samajdar, I. Scripta Mater. 49, 135 (2003).Google Scholar
11. Asaoka, K., Kuwayama, N., Okuno, O. and Miura, I. J. Biomed. Mater. Res. 19, 699 (1985).Google Scholar
12. Thieme, M., Wieters, K.P., Bergner, F., Scharnweber, D., Worch, H., Ndop, J., Kim, T.J., and Grill, W. J. Mater. Sci. - Mater. M. 12, 225 (2001).Google Scholar
13. Rak, Z.S., and Walter, J. J. Mater. Process. Tech. 175, 358 (2006).Google Scholar
14. Senkov, O.N., and Froes, F.H., Int. J. Hydrogen Energ. 24, 565 (1999).Google Scholar
15. Takashi, O., Tadashi, O., Munetoshi, W. and Masamichi, K. Jpn. Application Patent WO2002JP01332 20020215 (2002).Google Scholar
16. Fraval, J.T., and Godfrey, M.T., U.S. Patent 6,475,428 (2002).Google Scholar
17. Ghosh, M. and Chatterjee, S. Mater. Sci. Eng. A 358, 152 (2003).Google Scholar
18. Suzuki, T., Saikusa, T., Suematu, H., Jiang, W. and Yatsui, K. Surf. Coat. Tech. 169–170, 491 (2003).Google Scholar
19. Tomus, D., Tsuchiya, K., Inuzuka, M., Sasaki, M., Imai, D., Ohmori, T. and Umemoto, M. Scripta Mater. 48, 489 (2003).Google Scholar
20. Kundu, S. and Chatterjee, S. Mater. Sci. Eng. A 425, 107 (2006).Google Scholar