Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-23T09:13:21.366Z Has data issue: false hasContentIssue false

Titanium and zirconium oxidation under argon irradiation in the low MeV range

Published online by Cambridge University Press:  07 February 2013

Dominique Gorse-Pomonti
Affiliation:
Laboratorie des Solides Irradiés, UMR CNRS 7642, Ecole Polytechnique, F-91128, Palaiseau Cedex, France.
Ngoc-Long Do
Affiliation:
Laboratorie des Solides Irradiés, UMR CNRS 7642, Ecole Polytechnique, F-91128, Palaiseau Cedex, France.
Nicolas Bérerd
Affiliation:
Institut de Physique Nucléaire de Lyon, UMR CNRS 5822, F-69622, Villeurbanne Cedex, France.
Nathalie Moncoffre
Affiliation:
Institut de Physique Nucléaire de Lyon, UMR CNRS 5822, F-69622, Villeurbanne Cedex, France.
Gianguido Baldinozzi
Affiliation:
Matériaux Fonctionnels pour l’Energie, SPMS CNRS-Ecole Centrale Paris, Châtenay-Malabry, France
Get access

Abstract

We studied the irradiation effects on Ti and Zr surfaces in slightly oxidizing environment (rarefied dry air, 500°C) using multi-charged argon ions in the low MeV range (1 – 9 MeV) to the aim of determining the respective role of the electronic and nuclear stopping power in the operating oxidation process under irradiation. We have shown that ballistic collisions contribute significantly to the enhanced Ti and Zr oxidation under MeV argon bombardment. We have also shown that the projectile energy plays a significant role in the overall process.

A significant oxide film thickening is visible on titanium under irradiation, taking the form of a well-defined oxidation peak between 1 and 4 MeV, as a result of the Nuclear Backscattering Spectroscopy and Spectroscopic Ellipsometry studies.

A significant oxide film thickening is also visible on zirconium under same irradiation conditions, at 4 and 9 MeV, as a result of the NBS study. Work is in progress in order to determine how the modified oxidation process depends in this case on the projectile energy.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Do, N.-L., Bererd, N., Moncoffre, N., Yang, F., Trocellier, P., Serruys, Y., Gorse-Pomonti, D., J. Nucl. Mater., 419, 168 (2011).10.1016/j.jnucmat.2011.07.012CrossRefGoogle Scholar
Ziegler, J.F., Biersack, J.P., Littmark, U., The Stopping and Ranges of Ions in Solids, Pergamon, New York (1985).Google Scholar
Chevarier, A., Chevarier, N., Deydier, P., Jaffrézic, H., Moncoffre, N., Stern, M., Tousset, J., J. Trace Microprobe Tech. 6, 1 (1988).Google Scholar
Drude, P., Ann. Physik u.d. Chem, 39, 481 (1890).10.1002/andp.18902750402CrossRefGoogle Scholar
Forouhi, A.R., Bloomer, I., Phys. Rev. B, 34, 7018 (1986).10.1103/PhysRevB.34.7018CrossRefGoogle Scholar
Do, Ngoc-Long, Bérerd, N., Moncoffre, N., Garcia-Caurel, E. and Gorse, D., in preparation for J. Nucl. Mater.Google Scholar
Bérerd, N., Moncoffre, N., Chevarier, A., Jaffrézic, H., Faust, H. and Balanzat, E., Nucl. Instrum. Meth. B249, 513 (2006).10.1016/j.nimb.2006.03.043CrossRefGoogle Scholar
Fuhrman, F.G., Collins, F.C., J. Electrochem. Soc., 124, 1294 (1977).10.1149/1.2133562CrossRefGoogle Scholar