Hostname: page-component-5c6d5d7d68-wpx84 Total loading time: 0 Render date: 2024-08-25T19:03:51.940Z Has data issue: false hasContentIssue false

TiO2 Surface State Control for Dye Sensitized Solar Cells with High Efficiency and the Solidification -Fabrication of Charge Carrier Path

Published online by Cambridge University Press:  01 February 2011

Fumi Inakazu
Affiliation:
[email protected], Kyushu Institute of Technology, Kitakayushu, 808-0196, Japan
Yuhei Ogomi
Affiliation:
[email protected], Kyushu Institute of Technology, Kitakayushu, 808-0196, Japan
Yusuke Noma
Affiliation:
[email protected], Kyushu Institute of Technology, Kitakayushu, 808-0196, Japan
Yoshihisa Fujita
Affiliation:
[email protected], Kyushu Institute of Technology, Kitakayushu, 808-0196, Japan
Mitsuru Kono
Affiliation:
[email protected], Nippon Steel Chemical Co. Ltd., Kitakyushu, 804-8503, Japan
Yoshihiro Yamaguchi
Affiliation:
[email protected], Nippon Steel Chemical Co. Ltd., Kitakyushu, 804-8503, Japan
Yohie Kashiwa
Affiliation:
[email protected], Kyushu Institute of Technology, Kitakayushu, 808-0196, Japan
Takeshi Kogo
Affiliation:
[email protected], Kyushu Institute of Technology, Kitakayushu, 808-0196, Japan
Shuzi Hayase
Affiliation:
[email protected], Kyushu Institute of Technology, Kitakayushu, 808-0196, Japan
Get access

Abstract

Improvement of photovoltaic performance for dye sensitized solar cells (DSC) is discussed in terms of electron-path and ion-path. In order to make electron path, we focused on passivation of TiO2 surface states which are observed by thermally stimulated current (TSC). The TiO2 surface was well-passivated with dye molecules under pressurized CO2 atmosphere. It was found that DSC cells prepared by a CO2 process (Cell-CO2) had higher efficiency than those prepared by a conventional dipping process (Cell-DIP) and the higher efficiency was associated with low TiO2-surface state, high electron diffusion coefficient and long electron life time in TiO2 for the Cell-CO2. In addition, dye-staining under pressurized CO2 atmosphere had advantages over a conventional dipping process on rapid dye-uptake and less dye aggregation. In order to fabricate ion-path in solidified electrolyte, we focused on surface modification of nano-materials. Surface of nano-materials such as TiO2-nanoparticles and porous alumina films were modified with imidazolium iodide moieties consisting of long alkyl chains which render surface-molecules self-organized. Redox-species are concentrated on the self-organized molecules and make ion-path. We propose quasi-solid electrolyte system consisting of two layers having different charge carrier concentration to keep high photoconversion efficiencies even after solidification.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.1. O'Regan, B., and Grätzel, M., Nature 353, 737, 1991.10.1038/353737a0Google Scholar
2. Hagfeldt, A. and Graetze, M., Chem. Rev. 95, 347, 1995.10.1021/cr00033a003Google Scholar
3. Han, L., Koide, N., Chiba, Y., Islam, A., Komiya, R., Fuke, N., Fukui, A., and Yamanaka, R., Appl. Phys. Lett. 86, 213501, 2005.10.1063/1.1925773Google Scholar
4. Schlichtho, G., Huang, S.Y., Sprague, J., Frank, A.J., J. Phys. Chem. B 101, 8141, 1997.10.1021/jp9714126Google Scholar
5. Nakade, S., Saito, Y., Kubo, W., Kanzaki, T., Kitamura, T., Wada, Y. and Yanagida, S., Electrochem. Commun. 5, 804, 2003.10.1016/j.elecom.2003.07.008Google Scholar
6. Sakaguchi, S., Ueki, H., Kato, T., Kado, T., Shiratuchi, R., Takashima, W., Kaneto, K., and Hayase, S., J. Photochem. Photobiol. A. Chem. 164, 117, 2004.10.1016/j.jphotochem.2003.11.014Google Scholar
7. Fabregat-Santiago, F. and García-Cañadas, J., Palomares, E., Clifford, J. N., Haque, S. A., and Durrant, J. R., J. Appl. Phys. 96, 6903, 2004.10.1063/1.1812588Google Scholar
8. Kumara, G. R. R. A., Tennakone, K., Perera, V. P. S., Konno, A., Kaneko, S., and Okuya, M., J. Phys. D. 41, 868, 2001.10.1088/0022-3727/34/6/306Google Scholar
9. Zaban, A., Chen, S. G., Chappel, S., and Gregg, B. A., Chem. Commun. 22, 2231, 2002.Google Scholar
10. Chappel, S., Chen, S. G., and Zaban, A., Langmuir 18, 3336, 2002.10.1021/la015536sGoogle Scholar
11. Diamant, Y., Chen, S. G., Melamed, O., and Zaban, A., J. Phys. Chem. B. 107, 1977, 2003.10.1021/jp027827vGoogle Scholar
12. Palomares, E., Clifford, J. N., Haque, S. A., Lutz, T., and Durrant, J. R., Chem. Commun. 14, 1464, 2002.10.1039/b202515aGoogle Scholar
13. Palomares, E., Clifford, J. N., Haque, S. A., Lutz, T., and Durrant, J. R., J. Am. Chem. Soc. 125, 475, 2003.10.1021/ja027945wGoogle Scholar
14. Lenzmann, F., Nanu, M., Kijatkina, O., and Belaidi, A., Thin Solid Films 451, 639, 2004.10.1016/j.tsf.2003.10.091Google Scholar
15. Fukai, Y., Kondo, Y., Mori, S., Suzuki, E., Electrochem. Commum. 9, 1439, (2007).10.1016/j.elecom.2007.01.054Google Scholar
16. Nguyen, T. P., Materials Science in Semiconductor Processing 9, 198, 2006.10.1016/j.mssp.2006.01.060Google Scholar
17. Opanowics, A. and Petrucha, P., J. Appl. Phys. 93, 957, 2003.10.1063/1.1530713Google Scholar
18. Jessop, P. G., Ikariya, T., Noyori, R., Nature, 368, 231, 1994.10.1038/368231a0Google Scholar
19. Ogomi, Y., Sakaguchi, S., Kado, T., Kono, M., Yamaguchi, Y., Hayase, S., J. Electrochem. Soc., 153, A2294, 2006.Google Scholar
20. Peter, L. M., and Wijayatha, K. G. U., Electrochim. Acta., 45, 4543, 2000.10.1016/S0013-4686(00)00605-8Google Scholar
21. Gu, W. and Tripp, C. P., Langmuir 22, 5748, 2006 10.1021/la060571qGoogle Scholar
22. Otaka, H., Kira, M., Yano, K., Ito, S., Mitekura, H., Kawatam, T. Matsui, F., J. Photochem. Photobio. A: Chem., 164, 67, 2004.Google Scholar
23. Ogomi, Y., Sakaguchi, S., Hayase, S., Proceeding of SPIE, 2007 (San Diego)Google Scholar
24. Kroon, J. M. et al. , Prog. Photovolt: Res. Appl., 13 333, 2005.Google Scholar
25. Fuke, N., Fukui, A., Chiba, Y., Komiya, R., Yamanaka, R., and Han, L., Jpn. J. Appl. Phys., 46, L420, 2007.10.1143/JJAP.46.L420Google Scholar
26. Tennakone, K., Senadeera, G. K. R., Perera, V. P. S., Kottegoda, I. R. M., silra, L. A. A. De, Chem. Mater. 11, 2474, 1999.10.1021/cm990165aGoogle Scholar
27. Wang, P., Zakeeruddin, S. M., Moser, J., Nazeeruddin, M. K., Sekiguchi, T., Gratzel, M., Nat. Mater. 2, 402, 2003.10.1038/nmat904Google Scholar
28. Kubo, W., Murakoshi, K., Kitamura, T., Yoshida, S., Haruki, M., Hanabusa, K., Shirai, H., Wada, Y., Yanagida, S., J. Phys. Chem.B 105, 12809, 2001.10.1021/jp012026yGoogle Scholar
29. Wang, P., Zakkeruddin, S. M., Exnar, I., Gratzel, M., Chem. Commun. 2972, 2002.Google Scholar
30. Wang, P., Zakkeruddin, S. M., Comte, P., Exnar, I., Graetzel, M., J. Am. Chem. Soc. 125, 1166, 2003.10.1021/ja029294+Google Scholar
31. Kato, T., Kado, T., Tanaka, S., Okazaki, A. and Hayase, S., J. Electrochem. Soc. 153, A626, 2006.10.1149/1.2161578Google Scholar
32. Kato, T. and Hayase, S., J. Electrochem. Soc. 154, B112, 2007.10.1149/1.2393008Google Scholar