Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T01:44:56.598Z Has data issue: false hasContentIssue false

Time-Resolved Photoluminescence Studies of InxGa1−xAs1−yNy

Published online by Cambridge University Press:  10 February 2011

M. Smith
Affiliation:
Department of Physics, Kansas State University, Manhattan, KS 66506-2601
R. A. Mair
Affiliation:
Department of Physics, Kansas State University, Manhattan, KS 66506-2601
J.Y. Lin
Affiliation:
Department of Physics, Kansas State University, Manhattan, KS 66506-2601
H. X. Jiang
Affiliation:
Department of Physics, Kansas State University, Manhattan, KS 66506-2601 e-mail: [email protected]
E. D. Jones
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-0603
A. A. Allerman
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-0603
S. R. Kurtz
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-0603
Get access

Abstract

Time-resolved photoluminescence spectroscopy has been used to investigate carrier decay dynamics in InxGa1−xAs1−yNy (x ∼ 0.03, y ∼ 0.01) epilayers grown on GaAs by metalorganic chemical vapor deposition. Time-resolved PL measurements, performed for various excitation intensities and sample temperatures, indicate that the broad PL emission at low temperature is dominated by localized exciton recombination. Lifetimes in the range of 0.07–0.34 ns are measured; these photoluminescence lifetimes are significantly shorter than corresponding values obtained for GaAs. In particular, we observe an emission energy dependence of the decay lifetime at 10 K, whereby the lifetime decreases with increasing emission energy across the PL spectrum. This behavior is characteristic of a distribution of localized states, which arises from alloy fluctuations. We have also studied the effects of post-growth rapid thermal annealing (RTA) on the integrated photoluminescence emission intensity, which indicate that the optimal annealing conditions is 690 °C when annealed for 120 seconds in a nitrogen ambient.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kurtz, S. R., Allerman, A. A., Jones, E. D., Gee, J. M., Banas, J. J., and Hammons, B. E., Appl. Phys. Lett. 74, 729 (1999).Google Scholar
2. Geisz, J. F., Friedman, D. J., Olson, J. M., Kurtz, Sarah R., and Keyes, B. M., J. Crystal Growth 195, 401 (1998).Google Scholar
3. Friedman, D. J., Geisz, J. F., Kurtz, Sarah R., and Olson, J. M., J. Crystal Growth, 195, 409 (1998).Google Scholar
4. Kondow, M., Nakatsuka, S. I., Kitatani, T., Yazawa, Y., and Okai, M., Jpn. J. Appl. Phys. 35, 5711 (1996).Google Scholar
5. Sato, S. I., Osawa, Y., and Saitoh, T., Jpn. J. Appl. Phys. 36, 2671 (1997).Google Scholar
6. Larson, M. C., Kondow, M., Kitatani, T., Nakahara, K., Tamura, K., Inoue, H., and Oumi, K., IEEE Photonic Technol. Lett. 10, 188 (1988).Google Scholar
7. Xin, H. P. and Tu, C. W., Appl. Phys. Lett. 72, 2442 (1998).Google Scholar
8. Weyers, M., Sato, M., and Ando, H., Jpn. J. Appl. Phys. 31, 853 (1992).Google Scholar
9. Sato, S. and Satoh, S., J. Cryst. Growth 192, 381 (1998).Google Scholar
10. Tiedje, T. and Rose, A., Solid State Commun. 37, 49 (1980).Google Scholar
11. Modine, N. A., Allerman, A. A., Kurtz, S. R., Wright, A. F., Tozer, S. T., and Wei, X., Phys. Rev. B 60, 4430 (1999).Google Scholar
12. Jones, E. D., unpublished.Google Scholar
13. Eliseev, G., Perlin, P., Lee, J., and Osinski, M., App. Phys. Lett. 71, 569 (1997).Google Scholar
14. Cho, Yong-Hoon, Gainer, G. H., Fischer, A. J., Song, J. J., Keller, S., Mishra, U. K., and DenBaars, S. P., Appl. Phys. Lett. 73, 1370 (1998).Google Scholar
15. Smith, M., Chen, G. D., Lin, J. Y., Jiang, H. X., Khan, M. Asif, and Chen, Q., Appl. Phys. Lett. 69, 2837 (1996).Google Scholar
16. Chichibu, S., Azuhata, T., Sota, T., and Nakamura, S., Appl. Phys. Lett. 69, 4188 (1996).Google Scholar
17. Hooft, G. W.'t, Poel, W. A. J. A. van der, Molenkamp, L. W., and Foxon, C. T., Phys. Rev. B 35, 8281 (1987).Google Scholar
18. Nelson, R. J. and Sobers, R. G., J. Appl. Phys. 49, 6103 (1978).Google Scholar
19. Oueslati, M., Guillaume, C. Benoit a' la, and Zouaghi, M., Pbys. Rev. B 37, 3037 (1988).Google Scholar
20. Gourdon, C. and Lavallard, P., Phys. Stat. Sol. B 153, 641 (1989).Google Scholar