Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T05:38:21.620Z Has data issue: false hasContentIssue false

Time-Resolved Imaging and Photoluminescence of Gas-Suspended Nanoparticles Synthesized by Laser Ablation: Dynamics, Transport, Collection, and Ex Situ Analysis

Published online by Cambridge University Press:  15 February 2011

D. B. Geohegan
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN [email protected]
A. A. Puretzky
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN [email protected]
G. Duscher
Affiliation:
MPI für Metallforschung, Institut für Werkstoffwissenschaft, Seestr. 92, D-70174 Stuttgart
S. J. Pennycook
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN [email protected]
Get access

Abstract

The dynamics of gas phase nanoparticle formation by pulsed laser ablation into background gases are revealed by imaging photoluminescence and Rayleigh-scattered light from gas-suspended SiOx nanoparticles following ablation of c-Si targets into 1-10 Torr He and Ar. Two sets of dynamic phenomena are presented for times up to 15 s after KrF-laser ablation. Ablation of Si into heavier Ar results in a uniform, stationary plume of nanoparticles while Si ablation into lighter He results in a turbulent ring of particles which propagates forward at 10 m/s. The effects of gas flow on nanoparticle formation, photoluminescence, and collection are described. The first in situ time-resolved photoluminescence spectra from 1-10 nm diameter silicon particles were measured as the nanoparticles were formed and transported. Three spectral bands (1.8, 2.5 and 3.2 eV) similar to photoluminescence from oxidized porous silicon were measured, but with a pronounced vibronic structure. The size and composition of individual gas-condensed nanoparticles were determined by scanning transmission electron microscopy and correlated with the gas-phase photoluminescence. Weblike-aggregate nanoparticle films were collected at room temperature and 77K on c-Si substrates. After standard passivation anneals, the films exhibited strong room temperature photo-luminescence consisting of 3 spectral bands in agreement with the gas-phase measurements, however lacking the vibronic structure. These techniques demonstrate new ways to study and optimize the luminescence of novel optoelectronic nanomaterials during synthesis in the gas phase, prior to deposition.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kroto, H.W., Heath, J. R., O'Brien, S. C., Curl, R.F., and Smalley, R. E., Nature 318, 162 (1985).Google Scholar
2. Wilson, W. L., Szajowski, P. F., Brus, L.E., Science 262, 1242 (1993).Google Scholar
3. Schuppler, S., Friedman, S. L., Marcus, M. A., Adler, D. L., Xie, Y.-H., Ross, F. M., Chabal, Y. J., Harris, T. D., Brus, L.E., Brown, W.L., Chaban, E. E., Szajowski, P. F., Christman, S. B., and Citrin, P. H., Phys. Rev. B 52, 4910 (1995).Google Scholar
4. (a) Chiu, L.A., Seraphin, A. A., and Kolenbrander, K.D., J. Electronic Materials 23, 347 (1994).Google Scholar
(b) Werwa, E., Seraphin, A. A., Chiu, L.A., Zhou, C., and Kolenbrander, K.D., Appl. Phys. Lett. 64, 1821 (1994).Google Scholar
5. (a) El-Shall, M.S., Li, S., and Turkki, T., Graiver, D., Pernisz, U.C., Baraton, M.I., J.Phys. Chem. 99, 17805 (1995).Google Scholar
(b) Li, S., Silvers, S.J., and El-Shall, M. S., J. Phys. Chem. B, 101, 1794 (1997).Google Scholar
6. Movtchan, I.A., Marine, W., Dreyfus, R.W., Le, H.C., Sentis, M., and Autric, M., Appl. Surf. Sci. 96–98, 251 (1996).Google Scholar
7. (a) Yoshida, T., Takeyama, S., Yamada, Y., and Mutoh, K., Appl. Phys. Lett. 68, 1772 (1996).Google Scholar
(b) Yamada, Y., Orii, T., Umezu, I., Takeyama, S. and Yoshida, T., Jpn. J. Appl. Phys. 35, 1361 (1996).Google Scholar
8. Makimura, T., Kunii, Y., and Murakami, K., Jpn. J. Appl. Phys., 35 4780 (1996).Google Scholar
9. (a) Pulsed Laser Deposition of Thin Films, Ed. by Chrisey, D. B. and Hubler, G. K., (Wiley-Interscience Publisher), 1994.,Google Scholar
(b) Lowndes, D.H., Geohegan, D. B., Puretzky, A. A., Norton, D. P., and Rouleau, C.M., Science 273, 898 (1996).Google Scholar
10. Yoshida, T., Yamada, Y., and Orii, T., Technical Digest of the International Electron Devices Meeting, San Francisco, CA, Dec. 8-11, 1996, IEEE.Google Scholar
11. Hirschman, K.D., Tsybeskov, L., Duttagupta, S.P., and Fauchet, P.M., Nature 384, 338 (1996).Google Scholar
12. Muramoto, J., Nakata, Y., Okada, T. and Maeda, M., Jpn. J. Appl. Phys. 36 L563 (1997).Google Scholar
13. Geohegan, D. B., Puretzky, A. A., Duscher, G., and Pennycook, S. J., Appl. Phys. Lett. (in press).Google Scholar
14. Geohegan, D. B., (a) Appl. Phys. Lett. 60, 2732 (1992).Google Scholar
(b) Geohegan, D. B., Thin Solid Films 220, 138 (1992).Google Scholar
15. van de Hulst, H.C.: Light Scattering by Small Particles (Dover Publications, New York, 1981). Rayleigh scattering from silicon spheres, θ = 90°, with (φ = 2.9 × 1017 cm-2 photons, gives 3.1 × 10-7 r6 photons/particle at our CCD detector, requiring a density of r = 7.5 × 1012 r-6 cm-3 particles of radius r (in nm) for 1 count/pixel. To detect 1 nm particles, 2.7% of the plume atoms would need to condense.Google Scholar
16. Broad reviews are given by (a) Fauchet, P. M., J. Lumin. 70, 294 (1996).Google Scholar
(b) Koch, F., Petrova-Koch, V., J. Non-Cryst. Solids 198–200, 846 (1996).Google Scholar
17. (a) Jarrold, Martin F., Science 252, 1085 (1991).Google Scholar
(b) Honea, E.C., Kraus, J. S., Bower, J. E., and Jarrold, M. F., Z. Phys. D 26, 141 (1993).Google Scholar
18. Geohegan, D. B., Puretzky, A. A., Duscher, G., and Pennycook, S. J., submitted. Google Scholar
19. (a) Wood, R.F., Chen, K.R., Lebouef, J. N., Puretzky, A. A., and Geohegan, D. B., Phys. Rev. Lett. 79, 1571 (1997).Google Scholar
(b) Geohegan, D. B. and Puretzky, A. A. Appl. Phys. Lett. 67, 197 (1995).Google Scholar
(c) Appl. Surf. Sci. 96–98, 131 (1996).Google Scholar
20. (a) Proot, J.P., Delerue, C., and Allan, G., Appl. Phys. Lett. 61, 1948 (1992).Google Scholar
(b) Takagahara, T. and Takeda, K., Phys. Rev. B 46, 15578 (1992).Google Scholar
21. Zhao, X., Schoenfeld, O., Komuro, S., Aoyagi, Y., Sugano, T., (a)Phys. Rev. B 50, 18654 (1994).Google Scholar
(b) Zhao, X., Schoenfeld, O., Komuro, S., Aoyagi, Y., Sugano, T., Jpn. J. Appl. Phys. 33, L899 (1994).Google Scholar
22. Hummel, R. E., Ludwig, M.H., Chang, S. S., Fauchet, P.M., Vandyshev, Ju. V., and Tsybeskov, L., Solid State Comm. 95, 553 (1995).Google Scholar
23. Morisaki, H., Hashimoto, H., Ping, F.W., Nozawa, H., and Ono, H., J. Appl. Phys. 74, 2977 (1993).Google Scholar
24. Zhang, Q., Bayliss, S. C., Hutt, D. A., Appl. Phys. Lett. 66, 1977 (1995).Google Scholar
25. Kim, K., et al. Appl. Phys. Lett. 69, 3908 (1996).Google Scholar
26. Choi, W.C., et al. , Appl. Phys. Lett. 69, 3402 (1996).Google Scholar
27. Dinh, L.N., Chase, L.L., Balooch, M., Siekhaus, W.J., and Wooten, F., Phys. Rev. B, 54, 5029 (1996).Google Scholar
28. These include hydrocarbon contaminants (see Canham, L. T., Loni, A., Calcott, P.D. J., Simons, A. J., Reeves, C., Houlton, R., Newey, J. P., Nash, K. J., Cox, T. I., Thin Solid Films 276, 112 (1996).), siloxene (M.S. Brandt, H. D. Fuchs, M. Stutzmann, J. Weber and M. Cardona, Solid State Comm. 81, 307 (1992).), silanol (see Ref. 19) or photofragmentation of the Si-clusters themselves (see K.D. Rinnen and M. L. Mandich, Phys. Rev. Lett. 69, 1823 (1992).)Google Scholar
29. Calcott, P. D. J., Nash, K. J., Canham, L.T., Kane, M. J. (a) Mat. Res. Soc. Symp. Proc. 358, 465 (1995).Google Scholar
(b) Calcott, P. D. J., Nash, K. J., Canham, L.T., Kane, M. J. and Brumhead, D., J. Lumin. 57, 257 (1993).Google Scholar
30. Kanemitsu, Y., Shimuzu, N., Komoda, T., Hemment, P.L.F., and Sealy, B. J., Phys. Rev. B 54, R14329 (1996).Google Scholar
31. Suemoto, T., Tanaka, K., Nakajima, A., and Hakura, T., Phys. Rev. Lett. 70, 3659 (1993).Google Scholar
32. Okada, T., Iwaki, T., Yamamoto, K., Kasahara, H. and Abe, K., Solid State Comm., 49, 809 (1984).Google Scholar
33. Kimura, K. and Iwasaki, S., Mat. Res. Soc. Symp. Proc., Fall 1997, in press.Google Scholar
34. Spectrum courtesy Makimura, T. et al. , unpublished.Google Scholar
35. Brus, Louis, J. Phys. Chem. 98, 3575 (1994).Google Scholar