Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T15:13:39.298Z Has data issue: false hasContentIssue false

Time-Integrated Photoluminescence Studies of In0.3Ga0.7As/GaAs Quantum Dot Molecules

Published online by Cambridge University Press:  01 February 2011

William Kerr
Affiliation:
[email protected], University of Delaware, Materials Science and Engineering, 201 Dupont Hall, Newark, DE, 19716, United States, 302-831-2804, 302-831-4545
Valeria Gabriela Stoleru
Affiliation:
[email protected], University of Delaware, Materials Science and Engineering, 201 Dupont Hall, Newark, DE, 19716, United States
Anup Pancholi
Affiliation:
[email protected], University of Delaware, Materials Science and Engineering, 201 Dupont Hall, Newark, DE, 19716, United States
Get access

Abstract

We investigate experimentally and theoretically optical and electronic properties of In0.3Ga0.7As/GaAs quantum dot molecules (QDMs) formed by two layers of self-assembled, vertically stacked quantum dots (QDs). Structures with In0.3Ga0.7As/GaAs QD layers separated by a thin GaAs barrier were grown by solid source molecular beam epitaxy, and were characterized by time-integrated photoluminescence (PL). For the temperature-dependent PL measurements a He-flow optical cryostat was used to control the temperature between 4 and 300 K. The experimentally observed behavior is in good agreement with that expected from our eight-band k·p calculations. Optical and electronic properties of these QDMs are further compared with those of dots grown under conditions that did not promote vertical organization.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Lin, G. T, Stintz, A., Li, H., Malloy, K. J, and Lester, L.F, Electron. Lett. 35, 1163 (1999).Google Scholar
2 Raghavan, S., Forman, d., Hill, P., Weisse-Bernstein, N. R, Winckel, G. von, Rotella, P., Krishna, S., Kennerly, S. W., and Little, J. W, J. Appl. Phys. 96, 1036 (2004).Google Scholar
3 Wang, T. H, Li, H. W, and Zhou, J. M, Appl. Phys. Lett. 82, 3092 (2003).Google Scholar
4 Zrenner, A., Beham, E., Stufler, S., Findeis, F., Bichler, M., and Abstreiter, G., Nature 418, 613 (2002)Google Scholar
5 Suris, R.A, in “Future Trends in Microelectronics. Reflections on the Road to Nanotechnology,” edited by Luryi, S., Xu, J., Zaslavsky, A., Kluwer Acad. Publishers, 197208 (1996).Google Scholar
6 Wingreen, N. and Stafford, C.A, IEEE J. of Quantum Electronics 33, 1170 (1997).Google Scholar
7 Hsu, C.-F., O, J.-S., Zory, P., and Botez, D., IEEE J. of Selected Topics in Quantum Electronics 6, 491 (2000).Google Scholar
8 Fang, W., Xu, J.Y, Yamilov, A., Cao, H., Ma, Y., Ho, S.T and Solomon, G.S, Opt. Lett., 27, 948 (2002).Google Scholar
9 Grundmann, M., Stier, O., and Bimberg, D., Phys. Rev. B 52, 11969 (1995).Google Scholar
10 Zhang, K., Heyn, Ch., and Hansen, W., Appl. Phys. Lett. 76, 2229 (2000).Google Scholar
11 Ledentsov, N. N, Shchukin, V. A, Grundmann, M., Kristaedter, N., Böhrer, J., Schmidt, O., Bimberg, D., Ustinov, V. M, Egorov, A. Yu., Zhukov, A. E, Kop'ev, P. S, Zaitsev, S. V, Gordeev, N. Yu., Alferov, Zh. I., Borovkov, A. I, Kosogov, A. O, Rvimov, S. S, Werner, P., Gosele, U., and Heydenreich, J., Phys. Rev. B 54, 8743 (1996).Google Scholar
12 Pancholi, A. and Stoleru, G. V, Journal of Electronic Materials, submitted.Google Scholar
13 Sek, G., Ryczko, K., Misiewicz, J., Bayer, M., Klopf, F., Reithmaier, J.P, and Forchel, A., Solid State Comm. 117, 401 (2001).Google Scholar
14 Lee, H., Yang, W., and Sercel, P., Phys Rev B 55, 9757 (1997).Google Scholar
15 Xu, Z. Y, Lu, D., Yang, X. P, Yaun, Z. L, Zheng, B. Z, and Xu, J. Z, Ge, W. K, Wang, Y., and Chang, L. L Phys. Rev. B, 54 11528 (1996).Google Scholar
16 Klitabayashi, H. and Waho, T., J. Crystal Growth 150, 152 (1995)Google Scholar
17 Xie, Q., Madhukar, A., Chen, P., and Kobayashi, N. Phys. Rev. Lett. 75, 2542 (1995).Google Scholar
18 Tsurumachi, N., Son, Chang-Sik, Kim, Tae Geun, Hikosaka, Kazunori, Komori, Kazuhiro, and Ogura, Mutsuo, Physica E 21 300 (2004).Google Scholar
19 Gurioli, M., Vinattieri, A., Zamfirescu, M., and Colocci, M., Phys. Rev. B 73 085302 (2006).Google Scholar
20 Stoleru, V.G, Pal, D.. and Towe, E., Phys. E: Low-dimens. syst. and nanostr. 15, 131 (2002).Google Scholar
21 Pal, D., Stoleru, V.G, Towe, E., and Firsov, D., Jpn. J. Appl. Phys. 41, 482 (2002).Google Scholar
22 Stier, O., Grundmann, M., and Bimberg, D., Phys. Rev. B 59, 5688 (1999).Google Scholar