Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T02:22:46.059Z Has data issue: false hasContentIssue false

Time-Dependent Nucleation and Growth of Crystalline Phase During a Rapid Quench into a Glassy State

Published online by Cambridge University Press:  21 February 2011

V.A. Shneidman
Affiliation:
Department of Materials Science and Engineering, The University of Arizona, Tucson, AZ 85721
M.C. Weinberg
Affiliation:
Department of Materials Science and Engineering, The University of Arizona, Tucson, AZ 85721
Get access

Abstract

Corrections to the standard expressions for the volume fraction of the crystalline phase which arise due to time-dependent nucleation effects are considered both for the isothermal (transient) and nonisothermal (quench) situations. Analytical results are tested against numerically exact solutions of the Turnbull-Fisher nucleation equations. Physical consequences of the obtained expressions are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Kolmogorov, A.N., Bull. Acad. Sci. USSR (Sci. Mater. Nat.) 3 (1937) 3551; W.A. Johnson and R.F. Mehl, Trans. AIME 135 (1939) 416; M. Avrami, J. Chem. Phys. 7 (1939) 1103; 8 (1940) 212 ; 9 (1941) 177.Google Scholar
2 Volmer, M. and Weber, A., Z. Phys. Chem. 119, 227 (1926); L. Farkas, Z. Phys. Chem., 125, 236 (1927); R. Becker and W. Döring, Ann. Phys.24, 719 (1935); Ya.B. Zeldovich, Acta Physicochim. (USSR) 18, 1 (1943); J. Frenkel, Kinetic Theory of Liquids (Oxford University, Oxford,1946).Google Scholar
3 for generalizations of eq.(1) for anisotropic growth see, e.g., Weinberg, M.C. and Birnie, D.B., Physica A, J. Chem. Phys., to be published, and references therein.Google Scholar
4 Kelton, K.F. and Greer, A.L., J. Non-Cryst. Solids 79, 295 (1986).Google Scholar
5 Kelton, K.F., J. Non-Cryst. Solids 163, 283 (1993).Google Scholar
6 James, P., Phys. Chem. Glasses 15, 95 (1974); V. Fokin, A. Kalinina, and V. Filipovich, Fiz. Khim. Stekla 6, 148 (1980).Google Scholar
7 Im, J., private communication.Google Scholar
8 Stiffler, S.R., Thompson, M.O. and Peercy, P.S., Phys. Rev. B 43, 9851 (1991).Google Scholar
9 Peker, A. and Johnson, W.L., Appl. Phys. Lett. 63, 17 (1993); Y.J. Kim, R. Busch, W.L. Johnson, A.R. Rulison and W.K. Rhim, Appl. Phys. Lett. 65, 2136 (1994).Google Scholar
10 Suslick, K.S., Choe, S.B., Cichowlas, A.A. and Grinstaff, M.W., Nature 353, 414 (1991).Google Scholar
11 Shneidman, V.A. and Weinberg, M.C., J. Non-Cryst. Solids, 1995, to be published.Google Scholar
12 Shneidman, V.A., Sov. Phys. Tech. Phys. 33, 1338 (1988).Google Scholar
13 this relation, as well as eq.(4) are valid if no pre-existing nuclei are originally present in the system; otherwise see Shneidman, V.A. and Hänggi, P., J. Chem. Phys. 101, 1503 (1994).Google Scholar
14 Shneidman, V.A. and Weinberg, M.C., J. Non-Cryst. Solids 160, 89 (1993).Google Scholar
15 Kelton, K.F., Greer, A.L. and Thompson, C.V., J. Chem. Phys. 79, 6261 (1983).Google Scholar
16 Shneidman, V.A. and Weinberg, M.C., J. Chem. Phys. 97, 3621 (1992); 97, 3629 (1992).Google Scholar
17 Shneidman, V.A., JETP 64, 306 (1986); Sov. Phys. Tech. Phys. 32, 76 (1987).Google Scholar
18 Shneidman, V.A., (a) J. Chem. Phys. No. 22 (1995); (b) Phys. Rev. Lett., to be published.Google Scholar
19 Weinberg, M.C., Zelinski, B.J., Uhlmann, D.R., and Zanotto, E. D., J. Non-Cryst. Solids 123, 90 (1990).Google Scholar
20 Uhlmann, D.R., J. Non-Cryst. Solids 25, 73 (1977).Google Scholar