Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T16:40:00.651Z Has data issue: false hasContentIssue false

Time Resolved Transmission and Reflectivity of Pulsed Ruby Laser Irradiated Silicon*

Published online by Cambridge University Press:  15 February 2011

Douglas H. Lowndes
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830
G. E. Jellison JR.
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830
R. F. Wood
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830
Get access

Abstract

The time resolved optical transmission, T (atλ = 1152 nm), and reflectivity, R (at 633 nm and 1152 nm), have been measured for n-type single crystalline silicon (c-Si) during and immediately after pulsed ruby laser irradiation (λ = 693 nm, FWHM pulse duration 14 nsec), for a range of pulsed laser energy densities, El. The T is found to go to zero, and to remain at zero, for a period of time that increases with increasing El, in apparent disagreement with earlier measurements elsewhere that used semi-insulating Si and a different pulsed laser wavelength. Measured reflectivities during the high R phase agree within experimental error with reflectivities calculated from the optical constants of molten Si. Quantitative agreement is also found between both our T and R measurements and detailed time– and El-dependent results of thermal melting model calculations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Research sponsored by the Division of Materials Sciences, U.S. Department of Energy under contract W-7405-eng-26 with the Union Carbide Corporation.

References

REFERENCES

1. Lee, M. C., Lo, H. W., Aydinli, A. and Compaan, A., Appl. Phys. Lett. 38, 499 (1981).CrossRefGoogle Scholar
2. Aydinli, A., Lo, H. W., Lee, M. C. and Compaan, A., Phys. Rev. Lett. 46, 1640 (1981).CrossRefGoogle Scholar
3. Baeri, P., Compisano, S. V., Foti, G. and Rimini, E., Appl. Phys. Lett. 33, 137 (1978);Google Scholar
J. Appl. Phys. 50, 788 (1979);Google Scholar
Surko, C. M., Simons, A. L., Auston, D. H., Golovchenko, J. A., Slusher, R. E. and Venkatesan, T. N. C., Appl. Phys. Lett. 34, 635 (1979).Google Scholar
4. Wang, J. C., Wood, R. F. and Pronko, P. P., Appl. Phys. Lett. 33, 455 (1978);Google Scholar
Wood, R. F. and Giles, G. E., Phys. Rev. B23, 2923 (1981);CrossRefGoogle Scholar
Wood, R. F., Kirkpatrick, J. R. and Giles, G. E., Phys. Rev. B23, 5555 (1981).CrossRefGoogle Scholar
5. Shvarev, K. M., Baum, B. A. and Gel'd, P. V., High Temp. 15, 548 (1977);Google Scholar
Lampert, M. O., Koebel, J. M. and Siffert, P., J. Appl. Phys. 52, 4975 (1981).Google Scholar
6. van Vechten, J. A., Tsu, R. and Saris, F. W., Phys. Lett. 74A, 422 (1979).Google Scholar
7. Compaan, A., private communication.Google Scholar
8. Weakliem, H. A. and Redfield, D., J. Appl. Phys. 50, 1491 (1979).CrossRefGoogle Scholar
9. Svantesson, K. G., Nilsson, N. G. and Huldt, L., Sol. State Commun. 9, 213 (1971);Google Scholar
Nilsson, N. G., Physica Scripta 8, 165 (1973).CrossRefGoogle Scholar
10. Auston, D. H., Golovchenko, J. A., Simons, A. L., Slusher, R. E., Smith, P. R., Surko, C. M. and Venkatesan, T. N. C., AIP Conf. Proc. 50, 11 (1979).Google Scholar
11. Larson, B. C., Noggle, T. S., White, C. W. and Mills, D., this conference proceedings.Google Scholar
12. Wood, R. F. et al. , this conference proceedings (2 papers).Google Scholar
13. Lo, H. W. and Compaan, A., Phys. Rev. Lett. 44, 1604 (1980).CrossRefGoogle Scholar