Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T18:51:20.023Z Has data issue: false hasContentIssue false

Time Resolved Studies of Proton Irradiated Quantum Dots

Published online by Cambridge University Press:  01 February 2011

Saulius Marcinkevičius
Affiliation:
Department of Microelectronics and Information Technology, Royal Institute of Technology, Electrum 229, 16440 Kista, Sweden
Rosa Leon
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, U.S.A.
Charlene Lobo
Affiliation:
Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE, U.K.
Brian Magness
Affiliation:
Department of Physics and Astronomy, California State University, Los Angeles, CA 90032, U.S.A.
William Taylor
Affiliation:
Department of Physics and Astronomy, California State University, Los Angeles, CA 90032, U.S.A.
Get access

Abstract

The effects of proton irradiation on carrier dynamics were measured by time-resolved photoluminescence on InGaAs/GaAs quantum dot structures with different dot density and substrate orientation, as well as on InAlAs/AlGaAs quantum dots. Results were compared to irradiation effects on carrier dynamics in thin InGaAs quantum wells. We find that carrier lifetimes in QDs are much less affected by proton irradiation than in quantum wells, which can be attributed to the three-dimensional carrier confinement in quantum dots.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Leon, R., Swift, G. M., Magness, B., Taylor, W. A., Tang, Y. S., Wang, K. L., Dowd, P., and Zhang, Y. H., Appl. Phys Lett. 76, 2074 (2000)Google Scholar
2. Piva, P. G., Goldberg, R. D., Mitchell, I. V., Labrie, D., Leon, R., Charbonneau, S., Wasilewski, Z. R., and Fafard, S., Appl. Phys Lett. 77, 624 (2000)Google Scholar
3. Sobolev, N. A., Cavaco, A., Carmo, M. C., Grundmann, M., Heinrichsdorff, F., and Bimberg, D., Phys. Stat. Solidi B 224, 93 (2001)Google Scholar
4. Leon, R., Lobo, C., Zou, J., Romeo, T., and Cockayne, D. J. H., Phys. Rev. Lett. 81, 2486 (1998)Google Scholar
5. Lobo, C., Perret, N., Morris, D., Zou, J., Cockayne, D. J. H., Johnston, M. B., Gal, M., and Leon, R., Phys. Rev. B 62, 2737 (2000)Google Scholar
6. Leon, R., Marcinkevièius, S., Liao, X. Z., Zou, J., Cockayne, D. J. H., and Fafard, S., Phys. Rev. B 60, R8517 (1999).Google Scholar
7. Sercel, P. C., Phys. Rev. B 51, 14532 (1995)Google Scholar
8. Lobo, C., Leon, R., Marcinkevièius, S., Yang, W., Sercel, P. C., Liao, X. Z., Zou, J., and Cockayne, D. J. H. Phys. Rev. B 60, 16647 (1999)Google Scholar
9. Marcinkevièius, S. and Leon, R., Appl. Phys. Lett. 76, 2406 (2000)Google Scholar
10. Jenkinson, H. A., Maracas, G. N., O'Tooni, M., and Sarkis, R. G. in Energy Beam-Solid Interactions and Transient Thermal Processing (Mater. Res. Soc. Proc. Pittsburgh, PA, 1985) pp. p.299304.Google Scholar
11. Lobo, C., Ph.D. dissertation, Australian National University, March 2000.Google Scholar