Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-24T02:49:32.206Z Has data issue: false hasContentIssue false

Time Resolved In-Situ Diffuse X-ray Scattering Measurements of the Surface Morphology of Homoepitaxial SrTiO3 Films During Pulsed Laser Deposition

Published online by Cambridge University Press:  01 February 2011

John David Ferguson Jr
Affiliation:
[email protected], Cornell University, Materials Science and Engineering, 214 Bard Hall, Cornell University, Ithaca, NY, 14853, United States, 607 379-0980
Arthur R. Woll
Affiliation:
[email protected], Cornell University, Cornell High Energy Synchrotron Source, Ithaca, NY, 14853, United States
Gokhan Arikan
Affiliation:
[email protected], Cornell University, Applied and Engineering Physics, Ithaca, NY, 14853, United States
Darren S. Dale
Affiliation:
[email protected], Cornell University, Cornell High Energy Synchrotron Source, Ithaca, NY, 14853, United States
Aram Amassian
Affiliation:
[email protected], Cornell University, Materials Science and Engineering, Ithaca, NY, 14853, United States
Mark W. Tate
Affiliation:
[email protected], Cornell University, Department of Physics, Ithaca, NY, 14853, United States
Joel D. Brock
Affiliation:
[email protected], Cornell University, Applied and Engineering Physics, Ithaca, NY, 14853, United States
Get access

Abstract

Homoepitaxial SrTiO3 thin films were grown on SrTiO3 (001) using Pulsed Laser Deposition (PLD). The deposition process was monitored in-situ, via both x-ray reflectivity and surface diffuse x-ray scattering measurements in the G3 experimental station at the Cornell High Energy Synchrotron Source (CHESS). Using a CCD detector in 1D, or streak-camera, mode with approximately 0.3-second time resolution, data were collected during growths performed at two substrate temperatures: 695°C and 1000°C. While the specular reflectivity oscillations for the two growths are very similar, the diffuse scattering clearly shows a distinct change in the peak position. Using Atomic Force Microscopy (AFM), we illustrate how the peak position for the diffuse lobes of scattered intensity is directly related to the distribution of single unit cell high islands on the growing surface. Thus, the peak shift of the diffuse scattering indicates an order of magnitude change in the island density.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ohtomo, A. and Hwang, H. Y, Nature 427, 423 (2004).Google Scholar
2. Blank, D. H. A., Koster, G., Rijnders, G., Setten, E. Van, Slycke, P. and Rogalla, H., Applied Physics A: Materials Science & Processing 69, S17 (1999).Google Scholar
3. Lippmaa, M., Nakagawa, N., Kawasaki, M., Ohashi, S. and Koinuma, H., Applied Physics Letters 76, 2439 (2000).Google Scholar
4. Eres, G., Tischler, J. Z, Yoon, M., Larson, B. C, Rouleau, C. M, Lowndes, D. H and Zschack, P., Applied Physics Letters 80, 3379 (2002).Google Scholar
5. Fleet, A., Dale, D., Suzuki, Y. and Brock, J. D, Physical Review Letters 94, (2005).Google Scholar
6. Fleet, A., Dale, D., Woll, A. R, Suzuki, Y. and Brock, J. D, Physical Review Letters 96, (2006).Google Scholar
7. Murty, M. V. R., Streiffer, S. K, Stephenson, G. B, Eastman, J. A, Bai, G. R, Munkholm, A., Auciello, O. and Thompson, C., Applied Physics Letters 80, 1809 (2002).Google Scholar
8. Tischler, J., Eres, G., Larson, B., Rouleau, C. M, Zschack, P. and Lowndes, D. H, Physical Review Letters 96, (2006).Google Scholar
9. Zuo, J. K, Wendelken, J. F, Durr, H. and Liu, C. L, Physical Review Letters 72, 3064 (1994).Google Scholar
10. Bardotti, L., Stoldt, C. R, Jenks, C. J, Bartelt, M. C, Evans, J. W and Thiel, P. A, Physical Review B 57, 12544 (1998).Google Scholar
11. Robinson, I. K, Whiteaker, K. L and Walko, D. A, Physica B-Condensed Matter 221, 70 (1996).Google Scholar
12. Dulot, E., Kierren, B. and Malterre, D., Thin Solid Films 423, 64 (2003).Google Scholar
13. Ernst, H. J, Fabre, F. and Lapujoulade, J., Physical Review B 46, 1929 (1992).Google Scholar
14. Kisker, D. W, Stephenson, G. B, Tersoff, J., Fuoss, P. H and Brennan, S., Journal of Crystal Growth 163, 54 (1996).Google Scholar
15. Koster, G., Kropman, B. L, Rijnders, G. J. H. M., Blank, D. H. A. and Rogalla, H., Applied Physics Letters 73, 2920 (1998).Google Scholar
16. Kawasaki, M., Takahashi, K., Maeda, T., Tsuchiya, R., Shinohara, M., Ishiyama, O., Yonezawa, T., Yoshimoto, M. and Koinuma, H., Science 266, 1540 (1994).Google Scholar
17. Bartelt, N. C, Theis, W. and Tromp, R. M, Physical Review B 54, 11741 (1996).Google Scholar