Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T07:47:49.049Z Has data issue: false hasContentIssue false

Time Evolution of Nano-scale Morphology of Silicon Microstructure Surfaces in the Early Phase of Hydrogen Annealing

Published online by Cambridge University Press:  01 February 2011

Reiko Hiruta
Affiliation:
[email protected], Fuji Electric Advanced Technology Co., Ltd., Electron Device Technology Center, 4-18-1,Tsukama, Matsumoto, 390-0821, Japan, +81 263 27 8862, +81 263 28 5573
Hitoshi Kuribayashi
Affiliation:
[email protected], Fuji Electric Advanced Technology Co.,Ltd., Semiconductor Technology Laboratory, 4-18-1, Tsukama, Matsumoto, 390-0821, Japan
Ryosuke Shimizu
Affiliation:
[email protected], Fuji Electric Advanced Technology Co.,Ltd., Material and Science Laboratory, 1, Fujimachi, Hino, 191-8502, Japan
Koichi Sudoh
Affiliation:
[email protected], The Institute of Scientific and Industrial Research, Osaka University, 8-1, Mihogaoka, Ibaraki, 567-0047, Japan
Hiroshi Iwasaki
Affiliation:
[email protected], The Institute of Scientific and Industrial Research, Osaka University, 8-1, Mihogaoka, Ibaraki, 567-0047, Japan
Get access

Abstract

We have examined how the morphology of the trench sidewall evolves in the early phase of hydrogen annealing under the two conditions of hydrogen pressures. A distinguished result was obtained concerning the sidewall surface morphology after 30 s annealing at 1000 °C under 760 Torr hydrogen ambient. The evanescence of chemical Si dioxide formed by RCA cleaning process was clearly observed to initiate in various places on the surface. And in the area without chemical oxide, the appearance of atomic steps was also observed. In contrast under 40 Torr hydrogen ambient, the chemical oxide was completely removed even after 30 s annealing. Our observation shows that not only the rate of trench shape transformation but also the rate of removal of oxide films decreases with increasing hydrogen pressure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Fujishima, N. and Salama, T. A.: IEDM Tech. Dig. (1997) p. 359.Google Scholar
[2] Choi, Y.-K., Chang, L., Rande, P., Lee, J.-S., Ha, D., Balasubramanian, S., Agarwal, A., Ameen, M., King, T.-J. and Borkor, J.: IEDM Tech. Dig. (2002) p. 259.Google Scholar
[3] Kuribayashi, H., Shimizu, R., Sudoh, K., and Iwasaki, H.: J. Vac. Sci. Technol. A 22 (2004) 1406.Google Scholar
[4] Sudoh, K., Iwasaki, H., Kuribayashi, H., Hiruta, R. and Shimizu, R.: Jpn. J. Appl. Phys. 43 (2004) 5937.Google Scholar
[5] Hiruta, R., Kuribayashi, H., Shimizu, R., Sudoh, K. and Iwasaki, H.: Appl. Surf. Sci. 237 (2004) 63.Google Scholar
[6] Kuribayashi, H., Hiruta, R., Shimizu, R., Sudoh, K. and Iwasaki, H.: J. Vac. Sci. Technol. A 21 (2003) 1279.Google Scholar
[7] Kuribayashi, H., Hiruta, R., Shimizu, R., Sudoh, K. and Iwasaki, H.: Jpn. J. Appl. Phys. 43 (2004) L468.Google Scholar
[8] Sudoh, K., Iwasaki, H., Kuribayashi, H., Hiruta, R., and Shimizu, R., Surf. Sci. 600, L67 (2006).Google Scholar
[9] Kumagai, Y., Namba, K., Komeda, T., and Nishioka, Y.: J. Vac. Sci. Technol. A 16 (1998) 1775.Google Scholar
[10] Zhong, L., Hojo, A., Matsushita, Y., Aiba, Y., Hayashi, K., Takeda, R., Shirai, H., Saito, H., Matsushita, J., and Yoshikawa, J.: Phys. Rev. B 54 (1996) R2304.Google Scholar
[11] Kitahara, K. and Ueda, O., Jpn. J. Appl. Phys. 33, L1571 (1994).Google Scholar
[12] Ogino, T., Hibino, H. and Homma, Y.: Appl. Surf. Sci. 117/118 (1997) 642.Google Scholar