Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-08T08:10:05.699Z Has data issue: false hasContentIssue false

A Tight-Binding Theory of the Electronic Structures for Rhombohedral Semimetals and Sb/GaSb, Sb/AlSb Superlattices

Published online by Cambridge University Press:  21 February 2011

J.H. Xu
Affiliation:
Texas Center for Superconductivity and Department of Physics, University of Houston, Houston, TX 77204
E.G. Wang
Affiliation:
Space Vacuum Epitaxy Center, University of Houston, Houston, TX 77204
C.S. Ting
Affiliation:
Texas Center for Superconductivity and Department of Physics, University of Houston, Houston, TX 77204
W.P. Su
Affiliation:
Texas Center for Superconductivity and Department of Physics, University of Houston, Houston, TX 77204 Space Vacuum Epitaxy Center, University of Houston, Houston, TX 77204
Get access

Abstract

The band structures of three group-V semimetals As, Sb, and Bi with rhombohedral A7 symmetry are studied using a second-neighbor tight-binding model including spin-orbit interaction with an sp3s* basis. Then the bulk tight-binding parameters are used to investigate the electronic properties of semimetal-semiconductor superlattices made of alternating (111) layers of Sb and GaSb or AlSb. It is found that the band gap can be adjustable depending primarily on the thickness of the Sb layers. An interface state is observed in the region of the gap.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Golding, T. J., Dura, J. A., Wang, W. C., Zborowski, J. T., Vigliante, A., Miller, J. H., and Meyer, J. R., Semicond. Sci. Technol. 8, S117 (1993).Google Scholar
2 Divenere, A., Xi, X. J., Hou, C. L., Ketterson, J. B., Wong, G. K., and Sou, I. K., Appl. Phys. Lett, (in press).Google Scholar
3 Meyer, J. R., Bartoli, F. J., Youngdale, E. R., and Hoffman, C. A., J. Appl. Phys. 70, 4317 (1991).Google Scholar
4 Slater, J. C. and Koster, G. F., Phys. Rev. 94, 1498 (1954).Google Scholar
5 Xu, J. H., Wang, E. G., Ting, C. S., and Su, W. P., Phys. Rev. B48, December, 1993, in press.Google Scholar
6 Gonze, X., Michenaud, J. P., and Vigneron, J. P., Phys. Rev. B41, 11827 (1990).Google Scholar
7 Chelikowsky, J. R. and Cohen, M. L., Phys. Rev. B14, 556 (1976).Google Scholar
8 Hathieu, H., Anvergne, D., Marie, P., and Rustagi, K. C., Phys. Rev. B12, 5846 (1975); A. B. Chen and A. Sher, Phys. Rev. B23, 5360 (1981).Google Scholar
9 Joullie, A., Girault, B., Joullie, A. M., and Zien-Eddine, A., Phys. Rev. B25, 7830 (1982).Google Scholar
10 Tersoff, J., Phys. Rev. Lett. 56, 2755 (1986).Google Scholar
11 McCaldin, J. O., McGill, T. C., and Mead, C. A., Phys. Rev. Lett. 36, 56 (1976).Google Scholar