Hostname: page-component-7bb8b95d7b-fmk2r Total loading time: 0 Render date: 2024-09-12T14:06:50.774Z Has data issue: false hasContentIssue false

Tight-Binding Molecular Dynamics Study of Liquid and Amorphous Carbon

Published online by Cambridge University Press:  01 January 1992

C. Z. Wang
Affiliation:
Ames Laboratory and Department of Physics, Iowa State University, Ames, IA 50011
K. M. Ho
Affiliation:
Ames Laboratory and Department of Physics, Iowa State University, Ames, IA 50011
C. T. Chan
Affiliation:
Ames Laboratory and Department of Physics, Iowa State University, Ames, IA 50011
Get access

Abstract

Tight-binding molecular-dynamics simulations are performed to study the structure of liquid and amorphous carbon. Comparisons of our results with ab initiomolecular dynamics (Car-Parrinello) results and experimental data show that the scheme has sufficient accuracy and efficiency for realistic simulation study of the structural properties of complex carbon systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]For reviews on liquid carbon, see, for example, Bundy, F. P., J. Geophys Res. 85, 6930 (1985); Physica A 156, 169(1989).Google Scholar
[2]For reviews on amorphous carbon, see, for example, Robertson, J., Adv. Phys. 35, 317(1986), and in Diamond and Diamond-like Films and Coatings, edited by Clausing, R. et al., NATO Advanced Study Institutes Ser. B Vol.266, p.331 (Plenum, New York,1991).Google Scholar
[3] Galli, G., Martin, R. M., Car, R., and Parrinello, M., Phys. Rev. Lett. 62, 555(1989); ibid 63, 988(1989); Phys. Rev. B 42, 7470(1990).Google Scholar
[4] Tersoff, J., Phys. Rev. Lett 61, 2879(1988); Phys. Rev. B 44, 12039(1991).Google Scholar
[5] Kaukonen, H.-P. and Nieminen, R. M., Phys. Rev. Lett. 68, 620(1992).Google Scholar
[6] Kelires, P. C., Phys. Rev. Lett. 68, 1854(1992).Google Scholar
[7] Wang, C. Z., Chan, C. T., and Ho, K. M., Phys. Rev. B 39, 8586(1989); Phys. Rev. Lett. 66, 189(1990).Google Scholar
[8]Similar tight-binding molecular-dynamics scheme has also been developed by Khan, F. S. and Broughton, J. Q., Phys. Rev. B 39, 3688(1989).Google Scholar
[9] Xu, C. H., Wang, C. Z., Chan, C. T., and Ho, K. M., J. Phys: Conden. Matt.,4, 6047 (1992).Google Scholar
[10] Wang, C. Z., Xu, C. H., Zhang, B. L., Chan, C.T., and Ho, K.M., in Physics and Chemistry of Finite Systems: From Cluster to Crystals, eds. Jena, P., Khanna, S. N., and Rao, B. K., (Kluwer Aca., Boston/London, 1992), p. 1391.Google Scholar
[11] Zhang, B. L., Wang, C. Z., and Ho, K. M., Chem. Phys. Lett. 193, 225 (1992).Google Scholar
[12] Andersen, H. C., J. Chem. Phys. 72, 2384(1980).Google Scholar
[13] Li, F. and Lannin, J. S., Phys. Rev. Lett 65, 1905(1990).Google Scholar
[14]We use the algorithm proposed by Franzblau, D. S., Phys. Rev. B 44, 4925 (1991).Google Scholar
[15] Pan, H., Pruski, M., Gerstein, B. C., Li, F., and Lannin, J. S., Phys. Rev. B 44, 6741(1991).Google Scholar
[16] Chan, C. T., unpublished.Google Scholar
[17] Zhu, Z., Chan, C. T., and Ho, K. M., unpublished.Google Scholar